Reliable image geolocation is crucial for several applications, ranging from social media geo-tagging to fake news detection. State-of-the-art geolocation methods surpass human performance on the task of geolocation estimation from images. However, no method assesses the suitability of an image for this task, which results in unreliable and erroneous estimations for images containing no geolocation clues. In this paper, we define the task of image localizability, i.e. suitability of an image for geolocation, and propose a selective prediction methodology to address the task. In particular, we propose two novel selection functions that leverage the output probability distributions of geolocation models to infer localizability at different scales. Our selection functions are benchmarked against the most widely used selective prediction baselines, outperforming them in all cases. By abstaining from predicting non-localizable images, we improve geolocation accuracy from 27.8% to 70.5% at the city-scale, and thus make current geolocation models reliable for real-world applications.


翻译:可靠的图像地理定位对于从社交媒体地理标记到假新闻探测等多种应用都至关重要。 最新的地理定位方法超过了人类在从图像进行地理定位估计时的表现。 但是,没有方法评估图像是否适合这项任务,导致对不含地理定位线索的图像进行不可靠和错误的估计,导致对没有地理定位线索的图像进行不可靠和错误的估算。 在本文中,我们定义了图像本地化的任务,即图像是否适合地理定位,并提出了一个有选择的预测方法来应对任务。 特别是,我们提议了两个新的选择功能,利用地理定位模型的输出概率分布来推断不同尺度的本地化。 我们的选择功能以最广泛使用的选择性预测基线为基准,在所有案例中都比这些基准差。 我们不预测不可定位的图像,我们从27.8%提高到了城市规模的70.5%的地理定位精确度,从而使当前的地理定位模型对现实世界应用具有可靠性。

0
下载
关闭预览

相关内容

因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Arxiv
0+阅读 · 2022年1月21日
Arxiv
26+阅读 · 2018年2月27日
Arxiv
3+阅读 · 2018年2月20日
VIP会员
相关VIP内容
因果图,Causal Graphs,52页ppt
专知会员服务
241+阅读 · 2020年4月19日
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
23+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
26+阅读 · 2019年5月18日
论文浅尝 | Interaction Embeddings for Prediction and Explanation
开放知识图谱
11+阅读 · 2019年2月1日
逆强化学习-学习人先验的动机
CreateAMind
15+阅读 · 2019年1月18日
Unsupervised Learning via Meta-Learning
CreateAMind
41+阅读 · 2019年1月3日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
计算机视觉的不同任务
专知
5+阅读 · 2018年8月27日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
推荐|Andrew Ng计算机视觉教程总结
全球人工智能
3+阅读 · 2017年11月23日
Top
微信扫码咨询专知VIP会员