Nowadays, high-volume and privacy-sensitive data are generated by mobile devices, which are better to be preserved on devices and queried on demand. However, data analysts still lack a uniform way to harness such distributed on-device data. In this paper, we propose a data querying system, Deck, that enables flexible device-centric federated analytics. The key idea of Deck is to bypass the app developers but allow the data analysts to directly submit their analytics code to run on devices, through a centralized query coordinator service. Deck provides a list of standard APIs to data analysts and handles most of the device-specific tasks underneath. Deck further incorporates two key techniques: (i) a hybrid permission checking mechanism and mandatory cross-device aggregation to ensure data privacy; (ii) a zero-knowledge statistical model that judiciously trades off query delay and query resource expenditure on devices. We fully implement Deck and plug it into 20 popular Android apps. An in-the-wild deployment on 1,642 volunteers shows that Deck significantly reduces the query delay by up to 30x compared to baselines. Our microbenchmarks also demonstrate that the standalone overhead of Deck is negligible.


翻译:目前,高容量和对隐私敏感的数据是由移动设备生成的,这些设备最好保存在设备上,并根据需求进行查询。然而,数据分析师仍然缺乏一种统一的方法来利用这种在设备上分发的数据。在本文件中,我们提议了一个数据查询系统Deck,这个系统可以灵活地使用以装置为中心的联合分析器。Deck的关键想法是绕过应用程序开发者,但允许数据分析员通过集中查询协调员服务,直接将其分析代码在设备上运行。Deck向数据分析员提供标准API清单,并处理下方大多数特定设备任务。Deck还采用了两个关键技术:(一) 混合许可检查机制和强制性跨设备组合,以确保数据隐私;(二) 零知识统计模型,明智地交换查询延迟和查询设备的资源支出。我们完全采用Deck,将其插入20个流行的安非他命应用程序。在1 642名志愿人员中进行的内部部署表明,Deck将查询延迟率大大降低到30x,比基线。我们的微位标记也表明,顶部是可忽略的顶部。

0
下载
关闭预览

相关内容

软件工程评估(Evaluation and Assessment in Software Engineering,EASE)会议是一个国际领先的会议场所,学术界和实践者可以在此展示和讨论他们对基于证据的软件工程的研究及其对软件实践的影响。第23届EASE将于2019年4月在丹麦哥本哈根举行,由哥本哈根IT大学主办。EASE 2019欢迎向不同领域提交高质量的研究报告:完整的研究论文、短篇论文和手工艺品、新兴成果和愿景、行业轨迹、博士研讨会、海报。官网链接:https://ease2019.org/
最新《联邦学习Federated Learning》报告,Federated Learning
专知会员服务
86+阅读 · 2020年12月2日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
77+阅读 · 2020年7月26日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium9
中国图象图形学学会CSIG
0+阅读 · 2021年12月17日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium1
中国图象图形学学会CSIG
0+阅读 · 2021年11月3日
【ICIG2021】Latest News & Announcements of the Industry Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年7月28日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员