In this paper we present a new GPU-oriented mesh optimization method based on high-order finite elements. Our approach relies on node movement with fixed topology, through the Target-Matrix Optimization Paradigm (TMOP) and uses a global nonlinear solve over the whole computational mesh, i.e., all mesh nodes are moved together. A key property of the method is that the mesh optimization process is recast in terms of finite element operations, which allows us to utilize recent advances in the field of GPU-accelerated high-order finite element algorithms. For example, we reduce data motion by using tensor factorization and matrix-free methods, which have superior performance characteristics compared to traditional full finite element matrix assembly and offer advantages for GPU-based HPC hardware. We describe the major mathematical components of the method along with their efficient GPU-oriented implementation. In addition, we propose an easily reproducible mesh optimization test that can serve as a performance benchmark for the mesh optimization community.
翻译:在本文中,我们提出了一个基于高阶限制元素的新的GPU导向网格优化方法。我们的方法依靠固定地形的节点移动,通过目标-Matrix优化模型(TMOP),对整个计算网格(即所有网格节点都一起移动)使用全球非线性解析法。该方法的一个关键属性是网格优化程序以有限元素操作重塑,从而使我们能够利用GPU加速高阶限制元素算法领域的最新进展。例如,我们通过使用高频因子化和无矩阵方法来减少数据运动,这些方法的性能特点优于传统的完全有限元素矩阵组装,并为基于GPU的HPC硬件提供了优势。我们描述了该方法的主要数学组成部分及其高效的GPU导向实施。此外,我们提议了一种容易再生的网格优化测试,可以作为MES优化社区的业绩基准。