CMOS Image Sensors (CIS) are fundamental to emerging visual computing applications. While conventional CIS are purely imaging devices for capturing images, increasingly CIS integrate processing capabilities such as Deep Neural Network (DNN). Computational CIS expand the architecture design space, but to date no comprehensive energy model exists. This paper proposes CamJ, a detailed energy modeling framework that provides a component-level energy breakdown for computational CIS and is validated against nine recent CIS chips. We use CamJ to demonstrate three use-cases that explore architectural trade-offs including computing in vs. off CIS, 2D vs. 3D-stacked CIS design, and analog vs. digital processing inside CIS. The code of CamJ is available at: https://github.com/horizon-research/CamJ
翻译:CMOS图像传感器(CIS)对于新兴的视觉计算应用至关重要。尽管常规CIS是用于捕捉图像的纯成像设备,但越来越多的CIS集成了深度神经网络(DNN)等处理能力。计算CIS扩展了架构设计空间,但迄今为止没有全面的能量模型。本文提出了基于CamJ的详细能量建模框架,为计算CIS提供了组件级能量分解,并针对九个最近的CIS芯片进行了验证。我们使用CamJ演示了三个用例,探讨了包括在与非CIS内计算、2D与3D堆叠的CIS设计以及CIS内模拟与数字处理在内的架构权衡。CamJ的代码可在以下网址中找到:https://github.com/horizon-research/CamJ