Topic Modelling (TM) is from the research branches of natural language understanding (NLU) and natural language processing (NLP) that is to facilitate insightful analysis from large documents and datasets, such as a summarisation of main topics and the topic changes. This kind of discovery is getting more popular in real-life applications due to its impact on big data analytics. In this study, from the social-media and healthcare domain, we apply popular Latent Dirichlet Allocation (LDA) methods to model the topic changes in Swedish newspaper articles about Coronavirus. We describe the corpus we created including 6515 articles, methods applied, and statistics on topic changes over approximately 1 year and two months period of time from 17th January 2020 to 13th March 2021. We hope this work can be an asset for grounding applications of topic modelling and can be inspiring for similar case studies in an era with pandemics, to support socio-economic impact research as well as clinical and healthcare analytics. Our data and source code are openly available at https://github. com/poethan/Swed_Covid_TM Keywords: Latent Dirichlet Allocation (LDA); Topic Modelling; Coronavirus; Pandemics; Natural Language Understanding


翻译:模型(TM)来自自然语言理解(NLU)和自然语言处理(NLP)的研究分支,目的是便利对大型文件和数据集进行有见地的分析,例如对主要专题和主题变化的总结。这种发现由于对大数据分析的影响,在现实生活中的应用中越来越受欢迎。在本研究中,从社会媒体和保健领域,我们采用流行的Lientt Dirichlet分配(LDA)方法来模拟瑞典报纸关于科罗纳病毒的文章中的主题变化。我们描述了我们创建的系统,包括从2020年1月17日至2021年3月13日大约1年零2个月的时间里对大型文件和数据集进行有见地的分析,包括6515篇文章、应用的方法和关于主题变化的统计数据。我们希望这项工作能够成为专题模型应用的基础,并且能够激励在流行病流行时代进行类似的案例研究,以支持社会经济影响研究以及临床和保健分析。我们的数据和源代码在https://github.com/poethan/Swed_Covid_Covid_TainAligal Read;Driental Translation;Dlish;Drient Alistration;Driental

0
下载
关闭预览

相关内容

Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
最新BERT相关论文清单,BERT-related Papers
专知会员服务
52+阅读 · 2019年9月29日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
ACM MM 2022 Call for Papers
CCF多媒体专委会
5+阅读 · 2022年3月29日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
1+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
国家自然科学基金
0+阅读 · 2009年12月31日
Top
微信扫码咨询专知VIP会员