Time series, sets of sequences in chronological order, are essential data in statistical research with many forecasting applications. Although recent performance in many Transformer-based models has been noticeable, long multi-horizon time series forecasting remains a very challenging task. Going beyond transformers in sequence translation and transduction research, we observe the effects of down-and-up samplings that can nudge temporal saliency patterns to emerge in time sequences. Motivated by the mentioned observation, in this paper, we propose a novel architecture, Temporal Saliency Detection (TSD), on top of the attention mechanism and apply it to multi-horizon time series prediction. We renovate the traditional encoder-decoder architecture by making as a series of deep convolutional blocks to work in tandem with the multi-head self-attention. The proposed TSD approach facilitates the multiresolution of saliency patterns upon condensed multi-heads, thus progressively enhancing complex time series forecasting. Experimental results illustrate that our proposed approach has significantly outperformed existing state-of-the-art methods across multiple standard benchmark datasets in many far-horizon forecasting settings. Overall, TSD achieves 31% and 46% relative improvement over the current state-of-the-art models in multivariate and univariate time series forecasting scenarios on standard benchmarks. The Git repository is available at https://github.com/duongtrung/time-series-temporal-saliency-patterns.
翻译:尽管许多基于变异器的时间序列最近的表现是可见的,但长期的多正数时间序列预测仍是一项极具挑战性的任务。从变异器到序列转换和转换研究,我们观察下调和上调抽样的影响,这些抽样可以使时间序列出现时间显著模式。在本文所述观察的推动下调和上,我们提议在关注机制之上建立一个新结构,即时光度探测(TSD),并将其应用于多视距时间序列预测。我们重新改造传统的变异器脱coder结构,将之作为一系列深相动区块,与多头自留研究相结合。拟议的TRSD方法有助于在压缩的多头板上实现显著模式的多解析,从而逐步增强复杂的时间序列预报。实验结果表明,我们提出的方法大大超越了现有状态-艺术方法,超越了许多远视距时间序列/时序的多标准数据集。我们重新更新了传统的编码-解码-脱色序列预测设置了多个远视距轨道/直径直径直径轨道/直径直径直径的模型。总体、TSD-ristrisal-sal-sal-sal-sal-sial-sal-sal-sal-sal-sal-silvial-sal-silvial-s-s-silvial-silvial-silvial-silvial-silvial-silvial-s-s-silvial-silvial-s-s-s-s-s-silvial-silvial-silvial-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-s-