Gross Target Volume (GTV) segmentation plays an irreplaceable role in radiotherapy planning for Nasopharyngeal Carcinoma (NPC). Despite that Convolutional Neural Networks (CNN) have achieved good performance for this task, they rely on a large set of labeled images for training, which is expensive and time-consuming to acquire. In this paper, we propose a novel framework with Uncertainty Rectified Pyramid Consistency (URPC) regularization for semi-supervised NPC GTV segmentation. Concretely, we extend a backbone segmentation network to produce pyramid predictions at different scales, the pyramid predictions network (PPNet) is supervised by the ground truth of labeled images and a multi-scale consistency loss for unlabeled images, motivated by the fact that prediction at different scales for the same input should be similar and consistent. However, due to the different resolution of these predictions, encouraging them to be consistent at each pixel directly has low robustness and may lose details. To address this problem, we further design a novel uncertainty rectifying module to enable the framework to gradually learn from meaningful and reliable consensual regions at different scales. Extensive experiments on our collected NPC dataset with 258 volumes show that our method outperforms other state-of-the-art semi-supervised methods on 10% and 20% labeled data. Moreover, when increasing the labeled data to 50%, our method achieves a comparable result compared with a fully supervised baseline (the mean DSC 82.74% vs 83.51%, p > 0.05).


翻译:毛目标量( GTV) 毛目标量( GTV) 分解在Nopharyanngal Carcinom (NPC) 的放射治疗规划中发挥着不可替代的作用。 尽管进化神经网络(NPN) 取得了良好的业绩, 但它们依赖大量标签图像来进行培训, 培训成本昂贵且耗时。 在本文中, 我们提议了一个新框架, 由不确定性的校正金字塔( URPC) 来规范半监管的NPC GTV 分解 。 具体地说, 我们扩展了一个骨干分解网络, 以生成不同比例的金字塔预测, 金字塔预测网络( PPNet) 受标签图像的地面真实性监督, 以及无标签图像的多比例一致性损失, 其动机是不同比例的预测应该相似和一致的。 然而,由于这些预测的不同分辨率,鼓励每个像素分解的分解结果都不够稳健, 可能会丢失细节。 为了解决这个问题, 我们进一步设计一个新的不确定性模块, 使框架的比较模型能够比较50 平均值的模型, 将我们的数据比重的50 % 的基基基基 数据 展示, 显示我们的数据 以不同比例 。

0
下载
关闭预览

相关内容

Pyramid is a small, fast, down-to-earth Python web application development framework.
【MIT】反偏差对比学习,Debiased Contrastive Learning
专知会员服务
90+阅读 · 2020年7月4日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
151+阅读 · 2019年10月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
已删除
将门创投
6+阅读 · 2019年9月3日
VIP会员
相关资讯
已删除
将门创投
6+阅读 · 2019年9月3日
Top
微信扫码咨询专知VIP会员