It has been shown in the late 1960s that each formula of first-order logic without constants and function symbols obeys a zero-one law: As the number of elements of finite models increases, every formula holds either in almost all or in almost no models of that size. Therefore, many properties of models, such as having an even number of elements, cannot be expressed in the language of first-order logic. Halpern and Kapron proved zero-one laws for classes of models corresponding to the modal logics K, T, S4, and S5. In this paper, we prove zero-one laws for provability logic with respect to both model and frame validity. Moreover, we axiomatize validity in almost all relevant finite models and in almost all relevant finite frames, leading to two different axiom systems. In the proofs, we use a combinatorial result by Kleitman and Rothschild about the structure of almost all finite partial orders. On the way, we also show that a previous result by Halpern and Kapron about the axiomatization of almost sure frame validity for S4 is not correct. Finally, we consider the complexity of deciding whether a given formula is almost surely valid in the relevant finite models and frames.
翻译:1960年代后期已经表明,没有常数和函数符号的一阶逻辑的每种公式都遵守零一法:随着有限模型要素数量的增加,每个公式几乎在全部或几乎完全没有这种大小的模型中都具有效力。因此,许多模型的特性,例如元素的偶数,不能用一阶逻辑的语言表示。Halpern和Kapron证明,对于与模式逻辑K、T、S4和S5相对应的各类模型,法律是零一。在本文中,我们证明,在模型和框架有效性方面,关于可辨别逻辑的零一法。此外,在几乎所有相关的有限模型和几乎所有相关的有限框架中,每个公式都具有一致性,导致两种不同的反差体系。在证据中,我们使用Kleitman和Rothschild关于几乎所有有限部分订单结构的组合结果。在方法上,我们还表明,Halpern和Kapron关于S4的几乎确定框架有效性的系统化的零一线法则是正确的。最后,我们考虑确定S4的公式的复杂性。