Blockchain offers traceability and transparency to supply chain event data and hence can help overcome many challenges in supply chain management such as: data integrity, provenance and traceability. However, data privacy concerns such as the protection of trade secrets have hindered adoption of blockchain technology. Although consortium blockchains only allow authorised supply chain entities to read/write to the ledger, privacy preservation of trade secrets cannot be ascertained. In this work, we propose a privacy-preservation framework, PrivChain, to protect sensitive data on blockchain using zero knowledge proofs. PrivChain provides provenance and traceability without revealing any sensitive information to end-consumers or supply chain entities. Its novelty stems from: a) its ability to allow data owners to protect trade related information and instead provide proofs on the data, and b) an integrated incentive mechanism for entities providing valid proofs over provenance data. In particular, PrivChain uses Zero Knowledge Range Proofs (ZKRPs), an efficient variant of ZKPs, to provide origin information without disclosing the exact location of a supply chain product. Furthermore, the framework allows to compute proofs and commitments off-line, decoupling the computational overhead from blockchain. The proof verification process and incentive payment initiation are automated using blockchain transactions, smart contracts, and events. A proof of concept implementation on Hyperledger Fabric reveals a minimal overhead of using PrivChain for blockchain enabled supply chains.


翻译:供应链链链链为供应链事件数据提供了追踪和透明度,从而可以帮助克服供应链管理中的许多挑战,如数据完整性、来源和可追溯性。然而,数据隐私问题,如保护贸易秘密等,阻碍了采用链链技术。虽然财团链链只允许授权供应链实体读/写分类账,但无法确定贸易机密的保密性。在这项工作中,我们提议了一个隐私保护框架,即Priivchain,用零知识证据保护链链中的敏感数据。Privchain提供源头和可追踪性,而不向最终消费者或供应链实体披露任何敏感信息。其新颖性源于:(a) 允许数据所有人保护贸易相关信息,而不是提供数据证明的能力,以及(b) 为提供有效证据的实体提供证明的分类,无法确定贸易秘密。特别是,PrivicChain使用Zero知识范围检验(ZKRPs)这一高效的变式,在不披露供应链产品确切位置的情况下提供源信息。此外,该框架允许利用链链下的认证和承诺,在离线、链链链中进行标准化的认证,并采用Slical-级支付交易的升级流程。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
【阿里巴巴】 AI编译器,AI Compiler @ Alibaba,21页ppt
专知会员服务
44+阅读 · 2019年12月22日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
2019年机器学习框架回顾
专知会员服务
35+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Arxiv
0+阅读 · 2021年6月17日
Arxiv
0+阅读 · 2021年6月17日
VIP会员
相关资讯
计算机 | 中低难度国际会议信息8条
Call4Papers
9+阅读 · 2019年6月19日
计算机 | ICDE 2020等国际会议信息8条
Call4Papers
3+阅读 · 2019年5月24日
计算机 | USENIX Security 2020等国际会议信息5条
Call4Papers
7+阅读 · 2019年4月25日
计算机 | ISMAR 2019等国际会议信息8条
Call4Papers
3+阅读 · 2019年3月5日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
大数据 | 顶级SCI期刊专刊/国际会议信息7条
Call4Papers
10+阅读 · 2018年12月29日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
计算机类 | 期刊专刊截稿信息9条
Call4Papers
4+阅读 · 2018年1月26日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
Top
微信扫码咨询专知VIP会员