Artificial Intelligence (AI) is a fast-growing area of study that stretching its presence to many business and research domains. Machine learning, deep learning, and natural language processing (NLP) are subsets of AI to tackle different areas of data processing and modelling. This review article presents an overview of AI impact on education outlining with current opportunities. In the education domain, student feedback data is crucial to uncover the merits and demerits of existing services provided to students. AI can assist in identifying the areas of improvement in educational infrastructure, learning management systems, teaching practices and study environment. NLP techniques play a vital role in analyzing student feedback in textual format. This research focuses on existing NLP methodologies and applications that could be adapted to educational domain applications like sentiment annotations, entity annotations, text summarization, and topic modelling. Trends and challenges in adopting NLP in education were reviewed and explored. Contextbased challenges in NLP like sarcasm, domain-specific language, ambiguity, and aspect-based sentiment analysis are explained with existing methodologies to overcome them. Research community approaches to extract the semantic meaning of emoticons and special characters in feedback which conveys user opinion and challenges in adopting NLP in education are explored.


翻译:人工智能(AI)是一个快速增长的研究领域,它的存在延伸到许多商业和研究领域。机器学习、深层次学习和自然语言处理(NLP)是AI处理数据处理和建模不同领域的子集。本评论文章概述了AI对教育的影响,概述了目前的机会。在教育领域,学生反馈数据对于发现向学生提供的现有服务的优点和缺点至关重要。AI可以帮助确定教育基础设施、学习管理系统、教学实践和学习环境的改进领域。自然语言处理(NLP)技术在用文字格式分析学生反馈方面发挥着至关重要的作用。这一研究侧重于现有的国家语言处理方法和应用程序,这些方法和应用可以适用于教育领域的应用,如情绪说明、实体说明、文本汇总和专题建模。审查和探讨了在教育领域采用国家语言规划方面的趋势和挑战。国家语言、具体语言、模糊性和基于方方面的观点分析与克服这些挑战的现有方法一起加以解释。研究社区方法,以提取教科书的语义含义和特殊字符的语义,在教育中进行回馈。

0
下载
关闭预览

相关内容

100+篇《自监督学习(Self-Supervised Learning)》论文最新合集
专知会员服务
164+阅读 · 2020年3月18日
强化学习最新教程,17页pdf
专知会员服务
174+阅读 · 2019年10月11日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
45+阅读 · 2022年9月19日
Arxiv
15+阅读 · 2021年12月22日
Arxiv
20+阅读 · 2020年6月8日
Arxiv
110+阅读 · 2020年2月5日
VIP会员
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
征稿 | CFP:Special Issue of NLP and KG(JCR Q2,IF2.67)
开放知识图谱
1+阅读 · 2022年4月4日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
IEEE ICKG 2022: Call for Papers
机器学习与推荐算法
3+阅读 · 2022年3月30日
IEEE TII Call For Papers
CCF多媒体专委会
3+阅读 · 2022年3月24日
AIART 2022 Call for Papers
CCF多媒体专委会
1+阅读 · 2022年2月13日
Transferring Knowledge across Learning Processes
CreateAMind
27+阅读 · 2019年5月18日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
【论文】图上的表示学习综述
机器学习研究会
14+阅读 · 2017年9月24日
相关基金
国家自然科学基金
0+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2011年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员