We study the computational complexity of deciding whether a given set of term equalities and inequalities has a solution in an $\omega$-categorical algebra $\mathfrak{A}$. There are $\omega$-categorical groups where this problem is undecidable. We show that if $\mathfrak{A}$ is an $\omega$-categorical semilattice or an abelian group, then the problem is in P or NP-hard. The hard cases are precisely those where Pol$(\mathfrak{A},\neq)$ has a uniformly continuous minor-preserving map to the clone of projections on a two-element set. The results provide information about algebras $\mathfrak{A}$ such that Pol$(\mathfrak{A},\neq)$ does not satisfy this condition, and they are of independent interest in universal algebra. In our proofs we rely on the Barto-Pinsker theorem about the existence of pseudo-Siggers polymorphisms. To the best of our knowledge, this is the first time that the pseudo-Siggers identity has been used to prove a complexity dichotomy.
翻译:我们研究确定某一组术语的平等和不平等是否在美元(omega$- categoral regebra $\ mathfrak{A}$) 中找到解决办法的计算复杂性。 有 $(omega$- clak{A}) 问题无法解决。 我们发现, 如果 $( mathfrak{A}) 是 美元( omega$- clak) 或 abelian 组, 那么问题在 P 或 NP- hard 中。 困难的情况恰恰是 Pol$(\ mathfrak{A},\neq) 与两元素集的预测的克隆有着一致的微小保留图。 有关这个组的计算结果提供了有关 algebras $( mathfrak{A} 美元) 的信息, 那么 Pol$(\\ omga$- calgrealticle) 无法满足这一条件, 问题就在于普世的代数布拉。 在我们的证据中, 我们依靠Barto- Pinsker theorem the the firal- suprogigraphismismismismismismism the the the best to the to the the the pregigraphlation.