We propose Byzantine-robust federated learning protocols with nearly optimal statistical rates. In contrast to prior work, our proposed protocols improve the dimension dependence and achieve a tight statistical rate in terms of all the parameters for strongly convex losses. We benchmark against competing protocols and show the empirical superiority of the proposed protocols. Finally, we remark that our protocols with bucketing can be naturally combined with privacy-guaranteeing procedures to introduce security against a semi-honest server. The code for evaluation is provided in https://github.com/wanglun1996/secure-robust-federated-learning.
翻译:我们建议Byzantine-robust 联合会的学习协议采用几乎最佳的统计率; 与先前的工作不同,我们提议的协议改进了对维度的依赖性,并在所有强力螺旋损失参数方面实现了严格的统计率; 我们参照相互竞争的协议基准,并展示了拟议协议的经验优势; 最后,我们指出,我们关于打桶的协议可以自然地与隐私保障程序结合起来,引入针对半诚实服务器的安全; 评估守则载于https://github.com/wanglun1996/security-robust-federate-learlearning。