We introduce NeRD, a new demosaicking method for generating full-color images from Bayer patterns. Our approach leverages advancements in neural fields to perform demosaicking by representing an image as a coordinate-based neural network with sine activation functions. The inputs to the network are spatial coordinates and a low-resolution Bayer pattern, while the outputs are the corresponding RGB values. An encoder network, which is a blend of ResNet and U-net, enhances the implicit neural representation of the image to improve its quality and ensure spatial consistency through prior learning. Our experimental results demonstrate that NeRD outperforms traditional and state-of-the-art CNN-based methods and significantly closes the gap to transformer-based methods.
翻译:我们引入了NeRD,一种新的拼接方法,用于将Bayer格式的图案生成全彩色图像。 我们的方法利用神经场的进展,在将图像表示为具有正弦激活函数的坐标化神经网络的同时进行拼接。网络的输入是空间坐标和低分辨率Bayer模式,输出是相应的RGB值。编码器网络(ResNet和U-Net的混合)提高了图像的隐式神经表示的质量,通过先前的学习确保了空间一致性。我们的实验结果表明,NeRD优于传统和最先进的基于CNN的方法,并显著缩小了与基于Transformer的方法之间的差距。