A high-dimensional and incomplete (HDI) matrix frequently appears in various big-data-related applications, which demonstrates the inherently non-negative interactions among numerous nodes. A non-negative latent factor (NLF) model performs efficient representation learning to an HDI matrix, whose learning process mostly relies on a single latent factor-dependent, non-negative and multiplicative update (SLF-NMU) algorithm. However, an SLF-NMU algorithm updates a latent factor based on the current update increment only without appropriate considerations of past learning information, resulting in slow convergence. Inspired by the prominent success of a proportional-integral (PI) controller in various applications, this paper proposes a Proportional-Integral-incorporated Non-negative Latent Factor (PI-NLF) model with two-fold ideas: a) establishing an Increment Refinement (IR) mechanism via considering the past update increments following the principle of a PI controller; and b) designing an IR-based SLF-NMU (ISN) algorithm to accelerate the convergence rate of a resultant model. Empirical studies on four HDI datasets demonstrate that a PI-NLF model outperforms the state-of-the-art models in both computational efficiency and estimation accuracy for missing data of an HDI matrix. Hence, this study unveils the feasibility of boosting the performance of a non-negative learning algorithm through an error feedback controller.
翻译:高维和不完全(HDI)矩阵往往出现在与大数据相关的各种应用程序中,这表明许多节点之间内在的非负性互动。一个非负性潜在因素(NLF)模型对人类发展指数矩阵进行了高效的代表学习,而人类发展指数矩阵的学习过程主要依赖单一的潜在因素、非负性和多复制性更新(SLF-NMU)算法。然而,一个SLF-NMU算法仅更新基于当前更新增量的潜在因素,而没有适当考虑以往的学习信息,导致缓慢趋同。受成比例整体(PI)的反馈控制器在各种应用程序中取得显著成功的影响,本文件建议采用比例-内分结构混合非负性延迟因子(PI-NLF)模型的高效代表性,同时提出两个想法:a) 建立加固(IR)机制,根据PIF控制原则考虑过去更新增量;b) 设计一个基于IR的SLF-NM(IS)算法,以加快非整体性(PIPI)的准确性分析器模型的趋同性模型的趋同性模型的趋同性估算。