Image-based simulation, the use of 3D images to calculate physical quantities, fundamentally relies on image segmentation to create the computational geometry. However, this process introduces image segmentation uncertainty because there is a variety of different segmentation tools (both manual and machine-learning-based) that will each produce a unique and valid segmentation. First, we demonstrate that these variations propagate into the physics simulations, compromising the resulting physics quantities. Second, we propose a general framework for rapidly quantifying segmentation uncertainty. Through the creation and sampling of segmentation uncertainty probability maps, we systematically and objectively create uncertainty distributions of the physics quantities. We show that physics quantity uncertainty distributions can follow a Normal distribution, but, in more complicated physics simulations, the resulting uncertainty distribution can be both nonintuitive and surprisingly nontrivial. We also establish that simply bounding the uncertainty can fail in situations that are sensitive to image segmentation. While our work does not eliminate segmentation uncertainty, it makes visible the previously unrecognized range of uncertainty currently plaguing image-based simulation, enabling more credible simulations.


翻译:以图像为基础的模拟,使用 3D 图像来计算物理数量, 从根本上依靠图像分割法来创建计算几何。 但是, 这一过程引入了图像分割的不确定性, 因为有各种不同的分解工具( 包括人工和机器学习工具), 每种工具都会产生独特而有效的分解法。 首先, 我们证明这些变异会扩散到物理模拟中, 从而损害由此产生的物理物理数量。 第二, 我们提出了一个快速量化分解不确定性的一般框架 。 通过生成和抽样分解不确定概率图, 我们系统地客观地创建了物理数量的不确定性分布。 我们显示物理数量不确定性分布可以跟随正常分布, 但是, 在更为复杂的物理模拟中, 由此产生的不确定性分布可能是非直观的, 并且令人惊讶地说, 无法在对图像分割敏感的情况下将不确定性捆绑在一起 。 虽然我们的工作没有消除分解不确定性, 但我们的工作能够看到先前未确认的不确定性的范围, 目前以图像为基础的模拟会受到干扰, 使得模拟能够更可信的模拟。

0
下载
关闭预览

相关内容

图像分割就是把图像分成若干个特定的、具有独特性质的区域并提出感兴趣目标的技术和过程。它是由图像处理到图像分析的关键步骤。 所谓图像分割指的是根据灰度、颜色、纹理和形状等特征把图像划分成若干互不交迭的区域,并使这些特征在同一区域内呈现出相似性,而在不同区域间呈现出明显的差异性。

知识荟萃

精品入门和进阶教程、论文和代码整理等

更多

查看相关VIP内容、论文、资讯等
专知会员服务
46+阅读 · 2021年8月12日
神经常微分方程教程,50页ppt,A brief tutorial on Neural ODEs
专知会员服务
71+阅读 · 2020年8月2日
抢鲜看!13篇CVPR2020论文链接/开源代码/解读
专知会员服务
49+阅读 · 2020年2月26日
意识是一种数学模式
CreateAMind
3+阅读 · 2019年6月24日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
TorchSeg:基于pytorch的语义分割算法开源了
极市平台
20+阅读 · 2019年1月28日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
16+阅读 · 2018年12月24日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
Arxiv
30+阅读 · 2021年7月7日
Arxiv
8+阅读 · 2018年5月1日
Arxiv
6+阅读 · 2018年2月28日
VIP会员
Top
微信扫码咨询专知VIP会员