A datatype defining rewrite system (DDRS) is an algebraic (equational) specification intended to specify a datatype. When interpreting the equations from left-to-right, a DDRS defines a term rewriting system that must be ground-complete. First we define two DDRSs for the ring of integers, each comprising twelve rewrite rules, and prove their ground-completeness. Then we introduce natural number and integer arithmetic specified according to unary view, that is, arithmetic based on a postfix unary append constructor (a form of tallying). Next we specify arithmetic based on two other views: binary and decimal notation. The binary and decimal view have as their characteristic that each normal form resembles common number notation, that is, either a digit, or a string of digits without leading zero, or the negated versions of the latter. Integer arithmetic in binary and decimal notation is based on (postfix) digit append functions. For each view we define a DDRS, and in each case the resulting datatype is a canonical term algebra that extends a corresponding canonical term algebra for natural numbers. Then, for each view, we consider an alternative DDRS based on tree constructors that yields comparable normal forms, which for that view admits expressions that are algorithmically more involved. For all DDRSs considered, ground-completeness is proven.


翻译:数据类型定义重写系统( DDRS) 是用于指定数据类型的代数( equation) 。 在解释左对右方方的方程式时, 一个 DDS 定义了一个术语重写系统, 它必须是地面完成的。 首先, 我们为整数环定义了两个 DDS, 每个整数环由12 重写规则组成, 并证明它们的地面完整性。 然后, 我们根据单词视图, 即根据后缀单子附加器( 一种计算形式) 引入自然数和整数计算。 下一步, 我们根据后缀附加器( 后缀) 进行算术( 一种计算形式) 。 我们根据另外两种观点定义了解算术: 二进制和小数标记。 二进制和小数视图的特性是, 每个正常形式都类似于通用的编号, 即数字, 或数字, 或数字, 或数字, 或数, 或数, 或数数, 或数, 以( 后缀) 数字为( 后缀) 数附加功能附加功能功能。 对于每个视图, 我们定义定义的代变数, 变数为一个 Campal- realbra 。

0
下载
关闭预览

相关内容

专知会员服务
19+阅读 · 2020年9月6日
Linux导论,Introduction to Linux,96页ppt
专知会员服务
79+阅读 · 2020年7月26日
因果图,Causal Graphs,52页ppt
专知会员服务
249+阅读 · 2020年4月19日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
60+阅读 · 2019年10月17日
机器学习入门的经验与建议
专知会员服务
94+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
41+阅读 · 2019年10月9日
MIT新书《强化学习与最优控制》
专知会员服务
279+阅读 · 2019年10月9日
已删除
将门创投
4+阅读 · 2019年11月20日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
Entropoid Based Cryptography
Arxiv
0+阅读 · 2021年4月12日
Arxiv
35+阅读 · 2019年11月7日
Arxiv
9+阅读 · 2018年3月23日
Arxiv
8+阅读 · 2018年2月23日
VIP会员
相关资讯
已删除
将门创投
4+阅读 · 2019年11月20日
RoBERTa中文预训练模型:RoBERTa for Chinese
PaperWeekly
57+阅读 · 2019年9月16日
LibRec 精选:从0开始构建RNN网络
LibRec智能推荐
5+阅读 · 2019年5月31日
LeetCode的C++ 11/Python3 题解及解释
专知
16+阅读 · 2019年4月13日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
IEEE | DSC 2019诚邀稿件 (EI检索)
Call4Papers
10+阅读 · 2019年2月25日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
美国化学会 (ACS) 北京代表处招聘
知社学术圈
11+阅读 · 2018年9月4日
【推荐】自然语言处理(NLP)指南
机器学习研究会
35+阅读 · 2017年11月17日
相关论文
Top
微信扫码咨询专知VIP会员