Beam alignment is a critical bottleneck in millimeter wave (mmWave) communication. An ideal beam alignment technique should achieve high beamforming (BF) gain with low latency, scale well to systems with higher carrier frequencies, larger antenna arrays and multiple user equipments (UEs), and not require hard-to-obtain context information (CI). These qualities are collectively lacking in existing methods. We depart from the conventional codebook-based (CB) approach where the optimal beam is chosen from quantized codebooks and instead propose a grid-free (GF) beam alignment method that directly synthesizes the transmit (Tx) and receive (Rx) beams from the continuous search space using measurements from a few site-specific probing beams that are found via a deep learning (DL) pipeline. In realistic settings, the proposed method achieves a far superior signal-to-noise ratio (SNR)-latency trade-off compared to the CB baselines: it aligns near-optimal beams 100x faster or equivalently finds beams with 10-15 dB better average SNR in the same number of searches, relative to an exhaustive search over a conventional codebook.
翻译:光束对齐是毫米波(mmWave)通信中的关键瓶颈。理想的光束对齐技术应实现高光成像(BF)增益,低悬浮度、大宽度至高载频率系统、大天线阵列和多用户设备系统,不要求难以获取的背景资料(CI)。这些特性在现行方法中集体缺乏。我们偏离了常规的基于代码簿(CB)方法,即从四分化的代码簿中选择最佳光束,而提议一种无网格(GF)波形对齐方法,直接合成传输(Tx)并接收(Rx)从连续搜索空间接收(Rx)的光束,方法是利用从一些特定地点的探测频率、大天线阵列和多用户设备(UES)的管道中找到的测量数据。在现实环境中,拟议方法的信号对噪音比比CB基准基准值高得多:它将近最佳的光束对准100x或相当的波束对10至15次的搜索与10-15次的SNR平均搜索比。在相同的搜索中,在10-B搜索中将SNRAPR的搜索比值更好。