As the cyber threat landscape is constantly becoming increasingly complex and polymorphic, the more critical it becomes to understand the enemy and its modus operandi for anticipatory threat reduction. Even though the cyber security community has developed a certain maturity in describing and sharing technical indicators for informing defense components, we still struggle with non-uniform, unstructured, and ambiguous higher-level information, such as the threat actor context, thereby limiting our ability to correlate with different sources to derive more contextual, accurate, and relevant intelligence. We see the need to overcome this limitation in order to increase our ability to produce and better operationalize cyber threat intelligence. Our research demonstrates how commonly agreed upon controlled vocabularies for characterizing threat actors and their operations can be used to enrich cyber threat intelligence and infer new information at a higher contextual level that is explicable and queryable. In particular, we present an ontological approach to automatically inferring the types of threat actors based on their personas, understanding their nature, and capturing polymorphism and changes in their behavior and characteristics over time. Such an approach not only enables interoperability by providing a structured way and means for sharing highly contextual cyber threat intelligence but also derives new information at machine speed and minimizes cognitive biases that manual classification approaches entail.


翻译:随着网络威胁景观不断变得日益复杂和多变,理解敌人及其预测性减少威胁的操作方式变得更加关键。尽管网络安全界在描述和分享用于通报国防组成部分的技术指标方面已经发展到一定成熟程度,但我们仍然在与非统一、非结构化和模棱两可的更高层次的信息,例如威胁行为体的背景进行斗争,从而限制我们与不同来源建立联系的能力,从而获得更符合背景、准确和相关的情报。我们认为需要克服这一限制,以便提高我们制作和更好地操作网络威胁情报的能力。我们的研究表明,如何利用共同商定的用于确定威胁行为体特征及其行动的受控词汇来丰富网络威胁情报,并在更高层次上推导出可解释和可查询的新信息。特别是,我们提出了一个理论方法,自动推断基于其个人特征、了解其性质、捕捉其行为和特性的多种形态和变化的各种威胁行为体。这种方法不仅能够通过提供结构化的方式和手段来分享高度背景化的网络威胁信息,而且还能带来新的系统化。

0
下载
关闭预览

相关内容

《计算机信息》杂志发表高质量的论文,扩大了运筹学和计算的范围,寻求有关理论、方法、实验、系统和应用方面的原创研究论文、新颖的调查和教程论文,以及描述新的和有用的软件工具的论文。官网链接:https://pubsonline.informs.org/journal/ijoc
知识图谱推理,50页ppt,Salesforce首席科学家Richard Socher
专知会员服务
108+阅读 · 2020年6月10日
Stabilizing Transformers for Reinforcement Learning
专知会员服务
59+阅读 · 2019年10月17日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
0+阅读 · 2021年6月3日
Arxiv
0+阅读 · 2021年6月2日
Arxiv
10+阅读 · 2020年11月26日
The Measure of Intelligence
Arxiv
7+阅读 · 2019年11月5日
VIP会员
相关资讯
计算机 | IUI 2020等国际会议信息4条
Call4Papers
6+阅读 · 2019年6月17日
Call for Participation: Shared Tasks in NLPCC 2019
中国计算机学会
5+阅读 · 2019年3月22日
人工智能 | SCI期刊专刊信息3条
Call4Papers
5+阅读 · 2019年1月10日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
人工智能 | 国际会议信息10条
Call4Papers
5+阅读 · 2018年12月18日
Hierarchical Disentangled Representations
CreateAMind
4+阅读 · 2018年4月15日
人工智能 | 国际会议/SCI期刊约稿信息9条
Call4Papers
3+阅读 · 2018年1月12日
计算机类 | 国际会议信息7条
Call4Papers
3+阅读 · 2017年11月17日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员