Modern digital cameras and smartphones mostly rely on image signal processing (ISP) pipelines to produce realistic colored RGB images. However, compared to DSLR cameras, low-quality images are usually obtained in many portable mobile devices with compact camera sensors due to their physical limitations. The low-quality images have multiple degradations i.e., sub-pixel shift due to camera motion, mosaick patterns due to camera color filter array, low-resolution due to smaller camera sensors, and the rest information are corrupted by the noise. Such degradations limit the performance of current Single Image Super-resolution (SISR) methods in recovering high-resolution (HR) image details from a single low-resolution (LR) image. In this work, we propose a Raw Burst Super-Resolution Iterative Convolutional Neural Network (RBSRICNN) that follows the burst photography pipeline as a whole by a forward (physical) model. The proposed Burst SR scheme solves the problem with classical image regularization, convex optimization, and deep learning techniques, compared to existing black-box data-driven methods. The proposed network produces the final output by an iterative refinement of the intermediate SR estimates. We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments that generalize robustly to real LR burst inputs with onl synthetic burst data available for training.


翻译:现代数字照相机和智能手机主要依赖图像信号处理管道,以产生符合现实的彩色 RGB 图像。然而,与德国航天中心相机相比,由于物理限制,通常在许多带有紧凑相机传感器的便携式移动设备中获取低质量图像。低质量图像具有多种降解性,即摄影机运动导致的亚像素转换、照相机彩色过滤阵列导致的摩沙克模式、小型照相机传感器导致的低分辨率模式以及其它信息被噪音腐蚀。这种退化限制了当前单一图像超级分辨率(SISR)方法在从单一低分辨率图像中恢复高分辨率(HR)图像细节方面的性能。在这项工作中,我们提议采用一个高分辨率超分辨率超分辨率动态动态神经网络(RBSRICNN)来跟踪整个爆裂式摄影管道,拟议的Burst SR 计划解决了古典图像正规化、Convex优化和深层学习技术的问题,与现有的黑框数据驱动方法相比,限制了当前单一图像解析(HR)方法的性图像细节。我们提议的网络将最终生成高分辨率实验,以高分辨率模型测试为我们现有的高压性水平的合成SR 。我们提出的高压性数据分析,我们提出的高压性数据分析中的拟议网络将最终输出,以展示为可用的高压性数据分析。

0
下载
关闭预览

相关内容

神经网络(Neural Networks)是世界上三个最古老的神经建模学会的档案期刊:国际神经网络学会(INNS)、欧洲神经网络学会(ENNS)和日本神经网络学会(JNNS)。神经网络提供了一个论坛,以发展和培育一个国际社会的学者和实践者感兴趣的所有方面的神经网络和相关方法的计算智能。神经网络欢迎高质量论文的提交,有助于全面的神经网络研究,从行为和大脑建模,学习算法,通过数学和计算分析,系统的工程和技术应用,大量使用神经网络的概念和技术。这一独特而广泛的范围促进了生物和技术研究之间的思想交流,并有助于促进对生物启发的计算智能感兴趣的跨学科社区的发展。因此,神经网络编委会代表的专家领域包括心理学,神经生物学,计算机科学,工程,数学,物理。该杂志发表文章、信件和评论以及给编辑的信件、社论、时事、软件调查和专利信息。文章发表在五个部分之一:认知科学,神经科学,学习系统,数学和计算分析、工程和应用。 官网地址:http://dblp.uni-trier.de/db/journals/nn/
最新《Transformers模型》教程,64页ppt
专知会员服务
307+阅读 · 2020年11月26日
《DeepGCNs: Making GCNs Go as Deep as CNNs》
专知会员服务
30+阅读 · 2019年10月17日
Diganta Misra等人提出新激活函数Mish,在一些任务上超越RuLU
专知会员服务
14+阅读 · 2019年10月15日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
CVPR 2019 论文大盘点-超分辨率篇
极市平台
77+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
CoCoNet: A Collaborative Convolutional Network
Arxiv
6+阅读 · 2019年1月28日
VIP会员
相关资讯
CVPR 2019 论文大盘点-超分辨率篇
极市平台
77+阅读 · 2019年6月23日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
视频超分辨 Detail-revealing Deep Video Super-resolution 论文笔记
统计学习与视觉计算组
17+阅读 · 2018年3月16日
【CNN】一文读懂卷积神经网络CNN
产业智能官
18+阅读 · 2018年1月2日
计算机视觉近一年进展综述
机器学习研究会
9+阅读 · 2017年11月25日
可解释的CNN
CreateAMind
17+阅读 · 2017年10月5日
Auto-Encoding GAN
CreateAMind
7+阅读 · 2017年8月4日
Top
微信扫码咨询专知VIP会员