Modern digital cameras and smartphones mostly rely on image signal processing (ISP) pipelines to produce realistic colored RGB images. However, compared to DSLR cameras, low-quality images are usually obtained in many portable mobile devices with compact camera sensors due to their physical limitations. The low-quality images have multiple degradations i.e., sub-pixel shift due to camera motion, mosaick patterns due to camera color filter array, low-resolution due to smaller camera sensors, and the rest information are corrupted by the noise. Such degradations limit the performance of current Single Image Super-resolution (SISR) methods in recovering high-resolution (HR) image details from a single low-resolution (LR) image. In this work, we propose a Raw Burst Super-Resolution Iterative Convolutional Neural Network (RBSRICNN) that follows the burst photography pipeline as a whole by a forward (physical) model. The proposed Burst SR scheme solves the problem with classical image regularization, convex optimization, and deep learning techniques, compared to existing black-box data-driven methods. The proposed network produces the final output by an iterative refinement of the intermediate SR estimates. We demonstrate the effectiveness of our proposed approach in quantitative and qualitative experiments that generalize robustly to real LR burst inputs with onl synthetic burst data available for training.
翻译:现代数字照相机和智能手机主要依赖图像信号处理管道,以产生符合现实的彩色 RGB 图像。然而,与德国航天中心相机相比,由于物理限制,通常在许多带有紧凑相机传感器的便携式移动设备中获取低质量图像。低质量图像具有多种降解性,即摄影机运动导致的亚像素转换、照相机彩色过滤阵列导致的摩沙克模式、小型照相机传感器导致的低分辨率模式以及其它信息被噪音腐蚀。这种退化限制了当前单一图像超级分辨率(SISR)方法在从单一低分辨率图像中恢复高分辨率(HR)图像细节方面的性能。在这项工作中,我们提议采用一个高分辨率超分辨率超分辨率动态动态神经网络(RBSRICNN)来跟踪整个爆裂式摄影管道,拟议的Burst SR 计划解决了古典图像正规化、Convex优化和深层学习技术的问题,与现有的黑框数据驱动方法相比,限制了当前单一图像解析(HR)方法的性图像细节。我们提议的网络将最终生成高分辨率实验,以高分辨率模型测试为我们现有的高压性水平的合成SR 。我们提出的高压性数据分析,我们提出的高压性数据分析中的拟议网络将最终输出,以展示为可用的高压性数据分析。