Multivariate anomaly detection can be used to identify outages within large volumes of telemetry data for computing systems. However, developing an efficient anomaly detector that can provide users with relevant information is a challenging problem. We introduce our approach to hierarchical multivariate anomaly detection called DeCorus, a statistical multivariate anomaly detector which achieves linear complexity. It extends standard statistical techniques to improve their ability to find relevant anomalies within noisy signals and makes use of types of domain knowledge that system operators commonly possess to compute system-level anomaly scores. We describe the implementation of DeCorus an online log anomaly detection tool for network device syslog messages deployed at a cloud service provider. We use real-world data sets that consist of $1.5$ billion network device syslog messages and hundreds of incident tickets to characterize the performance of DeCorus and compare its ability to detect incidents with five alternative anomaly detectors. While DeCorus outperforms the other anomaly detectors, all of them are challenged by our data set. We share how DeCorus provides value in the field and how we plan to improve its incident detection accuracy.
翻译:多变异常探测可用于识别大量计算机系统遥测数据中的断流。然而,开发高效的异常探测器,为用户提供相关信息是一个具有挑战性的问题。我们引入了名为DeCororus(统计多变异常探测器)的等级多变异常探测方法,这是一个具有线性复杂性的统计性多变异常探测器。它推广了标准统计技术,以提高其在噪音信号中发现相关异常的能力,并利用系统操作员通常拥有的域知识类型来计算系统级异常分数。我们描述了DeCorus(DeCororus)实施一个在线日志异常探测工具的情况,用于在云服务供应商部署的网络设备系统信息。我们使用由15亿美元网络设备仪和数百张事故门组成的真实世界数据集来描述DeCorus(DeCorus)的性能,并将其探测事件的能力与另外5个异常探测器进行比较。DeCorus(DeCorus)超越其他异常探测器,所有这些探测器都受到我们的数据集的挑战。我们分享了DeCorus(DeCorus)如何在实地提供价值,以及我们如何计划如何改进事故探测准确性。