The primary analysis of clinical trials in diabetes therapeutic area often involves a mixed-model repeated measure (MMRM) approach to estimate the average treatment effect for longitudinal continuous outcome, and a generalized linear mixed model (GLMM) approach for longitudinal binary outcome. In this paper, we considered another estimator of the average treatment effect, called targeted maximum likelihood estimator (TMLE). This estimator can be a one-step alternative to model either continuous or binary outcome. We compared those estimators by simulation studies and by analyzing real data from 28 diabetes clinical trials. The simulations involved different missing data scenarios, and the real data sets covered a wide range of possible distributions of the outcome and covariates in real-life clinical trials for diabetes drugs with different mechanisms of action. For all the settings, adjusted estimators tended to be more efficient than the unadjusted one. In the setting of longitudinal continuous outcome, the MMRM approach with visits and baseline variables interaction appeared to dominate the performance of the MMRM considering the main effects only for the baseline variables while showing better or comparable efficiency to the TMLE estimator in both simulations and data applications. For modeling longitudinal binary outcome, TMLE generally outperformed GLMM in terms of relative efficiency, and its avoidance of the cumbersome covariance fitting procedure from GLMM makes TMLE a more advantageous estimator.
翻译:糖尿病治疗领域临床试验的主要分析往往涉及一种混合模式的重复措施(MMRM)方法,以估计纵向持续结果的平均治疗效果,以及纵向二元结果的一般线性混合模式(GLMMM)方法。在本文件中,我们考虑了平均治疗效果的另一个估计者,称为目标最大可能性估计器(TMLE),这一估计器可以是连续或二进制结果模型的一步骤替代。我们通过模拟研究和分析28次糖尿病临床试验的实际数据,对这些估计器进行比较。模拟涉及不同的缺失数据假设,而真实数据集涵盖了糖尿病药物实际临床试验的结果和共变体的广泛可能分布,并采用了不同的行动机制。对于所有环境,调整的估算器往往比未经调整的估算器更有效。在设定纵向连续结果时,MMRMRM方法与访问和基线变量相互作用似乎支配了MMRM的工作表现,只考虑到基准变量的主要效果,同时显示更好的或可比的效率,同时显示高压MLEMMM标准在模拟和高压模型中通常比高级数据。