Intensity-based multistate models provide a useful framework for characterizing disease processes, the introduction of interventions, loss to follow-up, and other complications arising in the conduct of randomized trials studying complex life history processes. Within this framework we discuss the issues involved in the specification of estimands and show the limiting values of common estimators of marginal process features based on cumulative incidence function regression models. When intercurrent events arise we stress the need to carefully define the target estimand and the importance of avoiding targets of inference that are not interpretable in the real world. This has implications for analyses, but also the design of clinical trials where protocols may help in the interpretation of estimands based on marginal features.
翻译:以强度为基础的多国模式为确定疾病过程、引入干预措施、丧失跟踪和其他在研究复杂生命历史过程的随机试验过程中产生的并发症提供了一个有用的框架。在此框架内,我们讨论定点数所涉及的问题,并展示基于累积发生率函数回归模型的边际进程特征共同估计者的限值。当发生间歇事件时,我们强调需要仔细确定目标估计值和避免在现实世界中无法解释的推论目标的重要性。这对分析有影响,同时也涉及临床试验的设计,在临床试验中,协议可以帮助根据边际特征解释估计值。