For parameters $n,\delta,B,$ and $C$, let $X=(X_{k\ell})$ be the random uniform contingency table whose first $\lfloor n^{\delta} \rfloor $ rows and columns have margin $\lfloor BCn \rfloor$ and the last $n$ rows and columns have margin $\lfloor Cn \rfloor$. For every $0<\delta<1$, we establish a sharp phase transition of the limiting distribution of each entry of $X$ at the critical value $B_{c}=1+\sqrt{1+1/C}$. In particular, for $1/2<\delta<1$, we show that the distribution of each entry converges to a geometric distribution in total variation distance, whose mean depends sensitively on whether $B<B_{c}$ or $B>B_{c}$. Our main result shows that $\mathbb{E}[X_{11}]$ is uniformly bounded for $B<B_{c}$, but has sharp asymptotic $C(B-B_{c}) n^{1-\delta}$ for $B>B_{c}$. We also establish a strong law of large numbers for the row sums in top right and top left blocks.
翻译:对于 $,\ delta, B, 美元 和 $美元, 美元, 美元 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 美元, 以 随机统一应急表, 第一个 美元, 底层 n ⁇ delta, 美元, 底层, 列的差值 $, 底层 $, 底层 $, 底部 美元, 底部 美元, 底部 美元, 底部 美元, 底部 等量 。 我们的主要结果显示 $\ mahbb{ { 美元 左 { { {X} 美元, 按 基值 美元 统一约束 $B < { { { { { { { { { { { { { { { { { 1+ { C} } 美元 。 美元 。 。 。 。 特别是 美元, 底部- b} 底部 美元 。