We present LiFMCR, a novel dataset for the registration of multiple micro lens array (MLA)-based light field cameras. While existing light field datasets are limited to single-camera setups and typically lack external ground truth, LiFMCR provides synchronized image sequences from two high-resolution Raytrix R32 plenoptic cameras, together with high-precision 6-degrees of freedom (DoF) poses recorded by a Vicon motion capture system. This unique combination enables rigorous evaluation of multi-camera light field registration methods. As a baseline, we provide two complementary registration approaches: a robust 3D transformation estimation via a RANSAC-based method using cross-view point clouds, and a plenoptic PnP algorithm estimating extrinsic 6-DoF poses from single light field images. Both explicitly integrate the plenoptic camera model, enabling accurate and scalable multi-camera registration. Experiments show strong alignment with the ground truth, supporting reliable multi-view light field processing. Project page: https://lifmcr.github.io/


翻译:本文提出了LiFMCR,这是一个用于多微透镜阵列(MLA)光场相机配准的新型数据集。现有光场数据集通常局限于单相机配置且普遍缺乏外部真值,而LiFMCR提供了两台高分辨率Raytrix R32光场相机的同步图像序列,以及由Vicon运动捕捉系统记录的高精度六自由度位姿真值。这种独特组合为多相机光场配准方法的严格评估提供了条件。作为基准,我们提供了两种互补的配准方法:基于跨视点点云通过RANSAC方法实现的鲁棒三维变换估计,以及从单幅光场图像估计外部六自由度位姿的光场PnP算法。两种方法均显式集成了光场相机模型,能够实现精确且可扩展的多相机配准。实验结果表明该方法与真值高度吻合,为可靠的多视角光场处理提供了支撑。项目页面:https://lifmcr.github.io/

0
下载
关闭预览

相关内容

数据集,又称为资料集、数据集合或资料集合,是一种由数据所组成的集合。
Data set(或dataset)是一个数据的集合,通常以表格形式出现。每一列代表一个特定变量。每一行都对应于某一成员的数据集的问题。它列出的价值观为每一个变量,如身高和体重的一个物体或价值的随机数。每个数值被称为数据资料。对应于行数,该数据集的数据可能包括一个或多个成员。
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Arxiv
30+阅读 · 2019年3月13日
Arxiv
11+阅读 · 2018年4月8日
VIP会员
相关资讯
Transferring Knowledge across Learning Processes
CreateAMind
29+阅读 · 2019年5月18日
Unsupervised Learning via Meta-Learning
CreateAMind
44+阅读 · 2019年1月3日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
IJCAI | Cascade Dynamics Modeling with Attention-based RNN
KingsGarden
13+阅读 · 2017年7月16日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
1+阅读 · 2015年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员