The functional linear regression model with points of impact is a recent augmentation of the classical functional linear model with many practically important applications. In this work, however, we demonstrate that the existing data-driven procedure for estimating the parameters of this regression model can be very instable and inaccurate. The tendency to omit relevant points of impact is a particularly problematic aspect resulting in omitted-variable biases. We explain the theoretical reason for this problem and propose a new sequential estimation algorithm that leads to significantly improved estimation results. Our estimation algorithm is compared with the existing estimation procedure using an in-depth simulation study. The applicability is demonstrated using data from Google AdWords, today's most important platform for online advertisements. The \textsf{R}-package \texttt{FunRegPoI} and additional \textsf{R}-codes are provided in the online supplementary material.


翻译:具有影响点的功能线性回归模型是具有许多实际重要应用的经典功能性线性模型最近得到的增强。 但是,在这项工作中,我们证明现有的估算这一回归模型参数的数据驱动程序非常不稳定和不准确。省略相关影响点的倾向是一个特别棘手的方面,导致忽略的偏差。我们解释了这一问题的理论原因,并提出了新的顺序估算算法,从而大大改进了估算结果。我们的估算算法与现有的估算程序进行了深入模拟研究,用谷歌AdWords的数据来比较。该数据是目前最重要的在线广告平台。在线补充材料提供了\ textsf{R}-package\textt{FunRegPoI}和额外的\textsf{R}代码。

0
下载
关闭预览

相关内容

【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Arxiv
8+阅读 · 2018年11月27日
Arxiv
5+阅读 · 2018年4月13日
Arxiv
3+阅读 · 2018年2月24日
VIP会员
相关VIP内容
【陈天奇】TVM:端到端自动深度学习编译器,244页ppt
专知会员服务
86+阅读 · 2020年5月11日
相关资讯
计算机 | 入门级EI会议ICVRIS 2019诚邀稿件
Call4Papers
10+阅读 · 2019年6月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
基于 Carsim 2016 和 Simulink的无人车运动控制联合仿真(四)
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
disentangled-representation-papers
CreateAMind
26+阅读 · 2018年9月12日
Hierarchical Imitation - Reinforcement Learning
CreateAMind
19+阅读 · 2018年5月25日
【推荐】(TensorFlow)SSD实时手部检测与追踪(附代码)
机器学习研究会
11+阅读 · 2017年12月5日
【论文】变分推断(Variational inference)的总结
机器学习研究会
39+阅读 · 2017年11月16日
【推荐】Python机器学习生态圈(Scikit-Learn相关项目)
机器学习研究会
6+阅读 · 2017年8月23日
Top
微信扫码咨询专知VIP会员