The functional linear regression model with points of impact is a recent augmentation of the classical functional linear model with many practically important applications. In this work, however, we demonstrate that the existing data-driven procedure for estimating the parameters of this regression model can be very instable and inaccurate. The tendency to omit relevant points of impact is a particularly problematic aspect resulting in omitted-variable biases. We explain the theoretical reason for this problem and propose a new sequential estimation algorithm that leads to significantly improved estimation results. Our estimation algorithm is compared with the existing estimation procedure using an in-depth simulation study. The applicability is demonstrated using data from Google AdWords, today's most important platform for online advertisements. The \textsf{R}-package \texttt{FunRegPoI} and additional \textsf{R}-codes are provided in the online supplementary material.
翻译:具有影响点的功能线性回归模型是具有许多实际重要应用的经典功能性线性模型最近得到的增强。 但是,在这项工作中,我们证明现有的估算这一回归模型参数的数据驱动程序非常不稳定和不准确。省略相关影响点的倾向是一个特别棘手的方面,导致忽略的偏差。我们解释了这一问题的理论原因,并提出了新的顺序估算算法,从而大大改进了估算结果。我们的估算算法与现有的估算程序进行了深入模拟研究,用谷歌AdWords的数据来比较。该数据是目前最重要的在线广告平台。在线补充材料提供了\ textsf{R}-package\textt{FunRegPoI}和额外的\textsf{R}代码。