We propose BAPose, a novel bottom-up approach that achieves state-of-the-art results for multi-person pose estimation. Our end-to-end trainable framework leverages a disentangled multi-scale waterfall architecture and incorporates adaptive convolutions to infer keypoints more precisely in crowded scenes with occlusions. The multi-scale representations, obtained by the disentangled waterfall module in BAPose, leverage the efficiency of progressive filtering in the cascade architecture, while maintaining multi-scale fields-of-view comparable to spatial pyramid configurations. Our results on the challenging COCO and CrowdPose datasets demonstrate that BAPose is an efficient and robust framework for multi-person pose estimation, achieving significant improvements on state-of-the-art accuracy.
翻译:我们建议采用“BAPose ” ( BAPose ), 这是一种新颖的自下而上的方法,它能为多人提供最先进的估算结果。 我们的端到端可培训框架可以利用一个分解的多尺度瀑布结构,并结合适应性演进,以更精确地推导拥挤的人群中的关键点。 由位于BAPose 的分解式瀑布模块获得的多尺度的表述方式,在级联结构中利用渐进过滤的效率,同时保持与空间金字塔配置相类似的多尺度视野。 我们在具有挑战性的COCO和CrowdPose数据集上的结果表明, BAPose 是一个高效和强大的多人构成估算框架,在最新精确度上取得了显著改善。