This report summarizes the outcomes of a two-day international scoping workshop on the role of artificial intelligence (AI) in science education research. As AI rapidly reshapes scientific practice, classroom learning, and research methods, the field faces both new opportunities and significant challenges. The report clarifies key AI concepts to reduce ambiguity and reviews evidence of how AI influences scientific work, teaching practices, and disciplinary learning. It identifies how AI intersects with major areas of science education research, including curriculum development, assessment, epistemic cognition, inclusion, and teacher professional development, highlighting cases where AI can support human reasoning and cases where it may introduce risks to equity or validity. The report also examines how AI is transforming methodological approaches across quantitative, qualitative, ethnographic, and design-based traditions, giving rise to hybrid forms of analysis that combine human and computational strengths. To guide responsible integration, a systems-thinking heuristic is introduced that helps researchers consider stakeholder needs, potential risks, and ethical constraints. The report concludes with actionable recommendations for training, infrastructure, and standards, along with guidance for funders, policymakers, professional organizations, and academic departments. The goal is to support principled and methodologically sound use of AI in science education research.


翻译:本报告总结了一场为期两天的国际范围界定研讨会的成果,该研讨会聚焦人工智能(AI)在科学教育研究中的作用。随着AI迅速重塑科学实践、课堂学习和研究方法,该领域既面临新的机遇,也面临重大挑战。报告通过厘清关键AI概念以减少歧义,并综述了AI如何影响科研工作、教学实践和学科学习的证据。报告识别了AI与科学教育研究主要领域的交叉点,包括课程开发、评估、认知认知、包容性以及教师专业发展,重点指出了AI能够支持人类推理的案例,以及可能对公平性或效度带来风险的案例。报告还探讨了AI如何改变定量、定性、人种志和基于设计等传统研究方法论,催生出结合人类与计算优势的混合分析形式。为引导负责任地整合AI,报告引入了一种系统思维启发式方法,帮助研究者考量利益相关者需求、潜在风险及伦理约束。报告最后提出了针对培训、基础设施和标准的可操作建议,并为资助机构、政策制定者、专业组织和学术部门提供了指导。其目标是支持在科学教育研究中原则性地、方法论健全地使用AI。

0
下载
关闭预览

相关内容

人工智能杂志AI(Artificial Intelligence)是目前公认的发表该领域最新研究成果的主要国际论坛。该期刊欢迎有关AI广泛方面的论文,这些论文构成了整个领域的进步,也欢迎介绍人工智能应用的论文,但重点应该放在新的和新颖的人工智能方法如何提高应用领域的性能,而不是介绍传统人工智能方法的另一个应用。关于应用的论文应该描述一个原则性的解决方案,强调其新颖性,并对正在开发的人工智能技术进行深入的评估。 官网地址:http://dblp.uni-trier.de/db/journals/ai/
FlowQA: Grasping Flow in History for Conversational Machine Comprehension
专知会员服务
34+阅读 · 2019年10月18日
Keras François Chollet 《Deep Learning with Python 》, 386页pdf
专知会员服务
163+阅读 · 2019年10月12日
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
VIP会员
相关资讯
Hierarchically Structured Meta-learning
CreateAMind
27+阅读 · 2019年5月22日
Unsupervised Learning via Meta-Learning
CreateAMind
43+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
18+阅读 · 2018年12月24日
STRCF for Visual Object Tracking
统计学习与视觉计算组
15+阅读 · 2018年5月29日
Focal Loss for Dense Object Detection
统计学习与视觉计算组
12+阅读 · 2018年3月15日
相关基金
国家自然科学基金
13+阅读 · 2017年12月31日
国家自然科学基金
2+阅读 · 2015年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
2+阅读 · 2014年12月31日
Top
微信扫码咨询专知VIP会员