Machine unlearning in learned cardinality estimation (CE) systems presents unique challenges due to the complex distributional dependencies in multi-table relational data. Specifically, data deletion, a core component of machine unlearning, faces three critical challenges in learned CE models: attribute-level sensitivity, inter-table propagation and domain disappearance leading to severe overestimation in multi-way joins. We propose Cardinality Estimation Pruning (CEP), the first unlearning framework specifically designed for multi-table learned CE systems. CEP introduces Distribution Sensitivity Pruning, which constructs semi-join deletion results and computes sensitivity scores to guide parameter pruning, and Domain Pruning, which removes support for value domains entirely eliminated by deletion. We evaluate CEP on state-of-the-art architectures NeuroCard and FACE across IMDB and TPC-H datasets. Results demonstrate CEP consistently achieves the lowest Q-error in multi-table scenarios, particularly under high deletion ratios, often outperforming full retraining. Furthermore, CEP significantly reduces convergence iterations, incurring negligible computational overhead of 0.3%-2.5% of fine-tuning time.
翻译:在基于学习的基数估计系统中,机器遗忘面临独特挑战,这源于多表关系数据中复杂的分布依赖关系。具体而言,数据删除作为机器遗忘的核心组成部分,在学习的基数估计模型中面临三个关键挑战:属性级敏感性、表间传播以及因域消失导致多路连接中的严重高估。我们提出了基数估计剪枝,这是首个专门为多表学习基数估计系统设计的遗忘框架。该框架引入了分布敏感性剪枝,通过构建半连接删除结果并计算敏感性分数来指导参数剪枝,以及域剪枝,用于完全移除因删除而消除的值域支持。我们在IMDB和TPC-H数据集上,对最先进的架构NeuroCard和FACE进行了CEP评估。结果表明,CEP在多表场景下始终实现最低的Q误差,特别是在高删除率条件下,其表现常优于完全重新训练。此外,CEP显著减少了收敛迭代次数,仅产生微调时间0.3%-2.5%的可忽略计算开销。