Inductive logic programming (ILP) is a form of machine learning. The goal of ILP is to induce a hypothesis (a set of logical rules) that generalises training examples. As ILP turns 30, we provide a new introduction to the field. We introduce the necessary logical notation and the main learning settings; describe the building blocks of an ILP system; compare several systems on several dimensions; describe four systems (Aleph, TILDE, ASPAL, and Metagol); highlight key application areas; and, finally, summarise current limitations and directions for future research.
翻译:感应逻辑编程(ILP)是一种机器学习的形式。ILP的目标是引出一种假设(一套逻辑规则),概括培训实例。当ILP转30时,我们为实地提供了一个新的介绍。我们引入了必要的逻辑符号和主要学习设置;描述ILP系统的组成部分;在几个方面比较几个系统;描述四个系统(Aleph、TILDE、ASPAL和Metagol);突出关键应用领域;最后,总结当前限制和未来研究的方向。