Autonomous mobile agents such as unmanned aerial vehicles (UAVs) and mobile robots have shown huge potential for improving human productivity. These mobile agents require low power/energy consumption to have a long lifespan since they are usually powered by batteries. These agents also need to adapt to changing/dynamic environments, especially when deployed in far or dangerous locations, thus requiring efficient online learning capabilities. These requirements can be fulfilled by employing Spiking Neural Networks (SNNs) since SNNs offer low power/energy consumption due to sparse computations and efficient online learning due to bio-inspired learning mechanisms. However, a methodology is still required to employ appropriate SNN models on autonomous mobile agents. Towards this, we propose a Mantis methodology to systematically employ SNNs on autonomous mobile agents to enable energy-efficient processing and adaptive capabilities in dynamic environments. The key ideas of our Mantis include the optimization of SNN operations, the employment of a bio-plausible online learning mechanism, and the SNN model selection. The experimental results demonstrate that our methodology maintains high accuracy with a significantly smaller memory footprint and energy consumption (i.e., 3.32x memory reduction and 2.9x energy saving for an SNN model with 8-bit weights) compared to the baseline network with 32-bit weights. In this manner, our Mantis enables the employment of SNNs for resource- and energy-constrained mobile agents.
翻译:无人驾驶飞行器(无人驾驶飞行器)和移动机器人等自主移动剂具有提高人类生产力的巨大潜力,但这些移动剂需要低电/能源消耗量才能长寿命,因为通常用电池发电,这些剂还需要适应变化/动态环境,特别是在远处或危险地点部署,因此需要高效率的在线学习能力。这些要求可以通过使用Spiking神经网络(SNN)来满足,因为SNNN的计算量稀少,而且由于生物激励型学习机制,网上学习效率很高,因此电/能源消耗量较低。然而,在自主移动剂上使用适当的 SNNN模型仍然需要一种方法。为此,我们提议采用Mantis 方法,系统使用自动移动剂SNNN,以便能够在动态环境中进行节能处理和适应能力。我们Mantis的主要想法包括优化SNNN的运作,使用生物易耗在线学习机制,以及SNN模式选择。实验结果表明,我们的方法保持高精度,但记忆足和能源消耗量要小得多(i.i.,3.32x的SNNEX),而S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-S-