Point cloud-based large scale place recognition is an important but challenging task for many applications such as Simultaneous Localization and Mapping (SLAM). Taking the task as a point cloud retrieval problem, previous methods have made delightful achievements. However, how to deal with catastrophic collapse caused by rotation problems is still under-explored. In this paper, to tackle the issue, we propose a novel Point Cloud-based Rotation-aware Large Scale Place Recognition Network (RPR-Net). In particular, to solve the problem, we propose to learn rotation-invariant features in three steps. First, we design three kinds of novel Rotation-Invariant Features (RIFs), which are low-level features that can hold the rotation-invariant property. Second, using these RIFs, we design an attentive module to learn rotation-invariant kernels. Third, we apply these kernels to previous point cloud features to generate new features, which is the well-known SO(3) mapping process. By doing so, high-level scene-specific rotation-invariant features can be learned. We call the above process an Attentive Rotation-Invariant Convolution (ARIConv). To achieve the place recognition goal, we build RPR-Net, which takes ARIConv as a basic unit to construct a dense network architecture. Then, powerful global descriptors used for retrieval-based place recognition can be sufficiently extracted from RPR-Net. Experimental results on prevalent datasets show that our method achieves comparable results to existing state-of-the-art place recognition models and significantly outperforms other rotation-invariant baseline models when solving rotation problems.


翻译:以云为主的大比例位置辨识是许多应用程序的重要但具有挑战性的任务,例如同步网络本地化和映射(SLAM) 。 首先,我们设计了三种新颖的旋转 — 变换功能(RIFs),这是能保持旋转 — 变换属性的低级别特征。 其次,我们利用这些RIFs设计了一个关注模块来学习旋转 — 变换内核内核。第三,我们将这些内核应用到以前的点云特性中,这是众所周知的 SO(3) 绘图进程。这样,我们设计了三个步骤中的旋转 — 旋转 — 变换功能(RIFs) 。我们设计了三种新型的旋转 — 变换变换功能(RIFs), 它们是能保持旋转- 变换属性属性的低级别特征。 其次,我们用这些RIFS, 设计了一个关注的模块来学习旋转 — 变换内核大内核内核内核内核内核内核内核内核内核内核内核。 我们用了一个快速的系统内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内核内

0
下载
关闭预览

相关内容

不可错过!《机器学习100讲》课程,UBC Mark Schmidt讲授
专知会员服务
73+阅读 · 2022年6月28日
专知会员服务
31+阅读 · 2021年6月12日
[综述]深度学习下的场景文本检测与识别
专知会员服务
77+阅读 · 2019年10月10日
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
40+阅读 · 2019年10月9日
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Arxiv
0+阅读 · 2022年10月14日
Arxiv
12+阅读 · 2018年1月28日
VIP会员
相关资讯
VCIP 2022 Call for Special Session Proposals
CCF多媒体专委会
1+阅读 · 2022年4月1日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium8
中国图象图形学学会CSIG
0+阅读 · 2021年11月16日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium3
中国图象图形学学会CSIG
0+阅读 · 2021年11月9日
【ICIG2021】Check out the hot new trailer of ICIG2021 Symposium2
中国图象图形学学会CSIG
0+阅读 · 2021年11月8日
【ICIG2021】Latest News & Announcements of the Plenary Talk1
中国图象图形学学会CSIG
0+阅读 · 2021年11月1日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
ICLR2019最佳论文出炉
专知
12+阅读 · 2019年5月6日
深度自进化聚类:Deep Self-Evolution Clustering
我爱读PAMI
15+阅读 · 2019年4月13日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
相关基金
国家自然科学基金
3+阅读 · 2017年12月31日
国家自然科学基金
1+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
Top
微信扫码咨询专知VIP会员