Driving is a complex task carried out under the influence of diverse spatial objects and their temporal interactions. Therefore, a sudden fluctuation in driving behavior can be due to either a lack of driving skill or the effect of various on-road spatial factors such as pedestrian movements, peer vehicles' actions, etc. Therefore, understanding the context behind a degraded driving behavior just-in-time is necessary to ensure on-road safety. In this paper, we develop a system called \ourmethod{} that exploits the information acquired from a dashboard-mounted edge-device to understand the context in terms of micro-events from a diverse set of on-road spatial factors and in-vehicle driving maneuvers taken. \ourmethod{} uses the live in-house testbed and the largest publicly available driving dataset to generate human interpretable explanations against the unexpected driving events. Also, it provides a better insight with an improved similarity of $80$\% over $50$ hours of driving data than the existing driving behavior characterization techniques.
翻译:驾驶是在不同空间物体及其时间互动的影响下完成的一项复杂任务,因此,驾驶行为突然波动可能是由于缺乏驾驶技能或行人运动、同行车辆动作等各种在行空间因素的影响。 因此,了解一个在时间上退化的驾驶行为背后的背景对于确保公路安全是必要的。 在本文中,我们开发了一个名为“oourmethod”的系统,利用从一个仪表盘上架边缘装置获得的信息,了解从一套不同的在行空间因素和车辆驾驶动作中进行的微活动的背景。\ourmethod ⁇ 利用内部活体测试台和最大的公开可用的驾驶数据集,对意外驾驶事件作出人类可解释的解释。此外,它提供了比现有驾驶行为特征鉴定技术更接近的80美元/美元/美元/50多小时的驾驶数据改进的洞察力。