High-dimensional nonlinear optimization problems subject to nonlinear constraints can appear in several contexts including constrained physical and dynamical systems, statistical estimation, and other numerical models. Feasible optimization routines can sometimes be valuable if the objective function is only defined on the feasible set or if numerical difficulties associated with merit functions or infeasible termination arise during the use of infeasible optimization routines. Drawing on the Riemannian optimization and sequential quadratic programming literature, a practical algorithm is constructed to conduct feasible optimization on arbitrary implicitly defined constraint manifolds. Specifically, with $n$ (potentially bound-constrained) variables and $m < n$ nonlinear constraints, each outer optimization loop iteration involves a single $O(nm^2)$-flop factorization, and computationally efficient retractions are constructed that involve $O(nm)$-flop inner loop iterations. A package, LFPSQP.jl, is created using the Julia language that takes advantage of automatic differentiation and projected conjugate gradient methods for use in inexact/truncated Newton steps.
翻译:受非线性限制的高度非线性非线性优化问题可以出现在几种情况下,包括有限的物理和动态系统、统计估计和其他数字模型。如果目标功能只在可行的数据集上界定,或者在使用不可行的优化常规过程中出现与功绩功能或不可行的终止有关的数字困难,那么,可行的优化常规有时会很有价值。利用里曼优化和连续四极编程文献,构建了一个实用的算法,对任意的隐含的限制方块进行可行的优化。具体地说,由于美元(可能约束的)变量和美元 < nm < 非线性约束限制,每个外部优化循环循环的循环都涉及单一的O(nm%2)美元-软因子化,并且计算高效的反射过程涉及$(nm)美元-软式内环的外延。一个包件LFPSQP.jl是利用Julia语言创建的,它利用自动区分和预测的在exact/runted Newton 阶梯段中使用的同梯度方法。