The secure summation problem is considered, where $K$ users, each holds an input, wish to compute the sum of their inputs at a server securely, i.e., without revealing any information beyond the sum even if the server may collude with any set of up to $T$ users. First, we prove a folklore result for secure summation - to compute $1$ bit of the sum securely, each user needs to send at least $1$ bit to the server, each user needs to hold a key of at least $1$ bit, and all users need to hold collectively some key variables of at least $K-1$ bits. Next, we focus on the symmetric groupwise key setting, where every group of $G$ users share an independent key. We show that for symmetric groupwise keys with group size $G$, when $G > K-T$, the secure summation problem is not feasible; when $G \leq K-T$, to compute $1$ bit of the sum securely, each user needs to send at least $1$ bit to the server and the size of each groupwise key is at least $(K-T-1)/\binom{K-T}{G}$ bits. Finally, we relax the symmetry assumption on the groupwise keys and the colluding user sets; we allow any arbitrary group of users to share an independent key and any arbitrary group of users to collude with the server. For such a general groupwise key and colluding user setting, we show that secure summation is feasible if and only if the hypergraph, where each node is a user and each edge is a group of users sharing the same key, is connected after removing the nodes corresponding to any colluding set of users and their incident edges.
翻译:安全总和问题被考虑, 当 $K$ 用户, 每个用户都有输入, 想要在服务器上安全地计算输入的总和, 也就是说, 即使服务器可能与任何安装的用户串通到$T$, 也不透露超出总和范围的任何信息。 首先, 我们证明, 安全总和的结果是民俗的—— 安全地计算1美元比特, 每个用户都需要至少向服务器发送1美元, 每个用户都需要至少持有1美元位元的密钥, 并且所有用户都需要集体持有至少$K-1 比特的某个关键变量。 下一步, 我们关注的对称组密钥设置, 每个组的$G$用户共享一个独立的密钥。 当$ > K- T$时, 每个用户需要至少发送 1 美元, 每个组的对称的用户在服务器和每个组的对数中, 每个组的对数将显示一个总用户的对数。 当 G- T 共享时, 安全的对数问题不可行; 当 $G\ K- t 时, 如果每个组是安全的组, 如果每个组的用户需要以至少1美元的密钥用户和每个组, 我们的用户在服务器和每个组的对数中, 每个组的对数的对数中, 每个组的对一个键的对数, 将显示的对数, 每个组的对数的对数。