Active Flux is a recently developed numerical method for hyperbolic conservation laws. Its classical degrees of freedom are cell averages and point values at cell interfaces. These latter are shared between adjacent cells, leading to a globally continuous reconstruction. The update of the point values includes upwinding, but without solving a Riemann Problem. The update of the cell average requires a flux quadrature at the cell interface, which can be immediately performed using the point values. This paper explores different extensions of Active Flux to arbitrarily high order of accuracy, while maintaining the idea of global continuity. We propose to either increase the stencil while keeping the same degrees of freedom, or to increase the number of point values, or to include higher moments as new degrees of freedom. These extensions have different properties, and reflect different views upon the relation of Active Flux to the families of Finite Volume, Finite Difference and Finite Element methods.
翻译:活性Flux 是一种最近开发的双曲保护法的数字方法。 它的经典自由度是单元格界面的单元格平均值和点值。 这些自由度是相邻单元格共享的, 导致全球持续重建。 点值的更新包括向上倾斜, 但不解决 Riemann 问题 。 单元格平均值的更新需要在单元格界面上进行通量二次曲线, 使用点值可以立即进行 。 本文探索主动流动的不同扩展度, 任意地高精度, 同时保持全球连续性的理念 。 我们提议要么在保持相同自由度的同时增加点值, 或者增加点值数量, 或将更高的时间作为新自由度 。 这些扩展具有不同的属性, 并反映对主动流动与 Finite voile 、 Finite Explus 和 Finite Element 方法的关系的不同观点 。