Evolutionary algorithms have been successfully applied to attacking Physically Unclonable Functions (PUFs). CMA-ES is recognized as the most powerful option for a type of attack called the reliability attack. While there is no reason to doubt the performance of CMA-ES, the lack of comparison with different metaheuristics and results for the challenge-response pair-based attack leaves open questions if there are better-suited metaheuristics for the problem. In this paper, we take a step back and systematically evaluate several metaheuristics for the challenge-response pair-based attack on strong PUFs. Our results confirm that CMA-ES has the best performance, but we also note several other algorithms with similar performance while having smaller computational costs. More precisely, if we provide a sufficient number of challenge-response pairs to train the algorithm, various configurations show good results. Consequently, we conclude that EAs represent a strong option for challenge-response pair-based attacks on PUFs.
翻译:进化算法被成功地应用于攻击物理上不可调的功能(PUFs) 。 CMA-ES被公认为一种称为可靠性攻击的最有力的攻击选择。 虽然没有理由怀疑CMA-ES的性能,但与不同的计量经济学和基于挑战-反应的对等攻击的结果相比,缺乏与不同的计量经济学和结果的可比性,因此,如果对问题有更适合的计量经济学,那么就会产生问题。在本文中,我们退一步,系统评估对强大的PUFs进行的挑战-反应对等攻击的若干计量经济学。我们的结果证实,CMA-ES的性能是最好的,但我们也注意到其他一些类似性能的算法,而计算成本却较小。更确切地说,如果我们提供足够数量的质疑-反应对等来训练算法,那么各种配置就会显示良好的结果。 因此,我们的结论是,EAs代表了对基于挑战-对准攻击PUFs的强烈选择。