Permeability has a dominant influence on the flow properties of a natural fluid. Lattice Boltzmann simulator determines permeability from the nano and micropore network. The simulator holds millions of flow dynamics calculations with its accumulated errors and high consumption of computing power. To efficiently and consistently predict permeability, we propose a morphology decoder, a parallel and serial flow reconstruction of machine learning segmented heterogeneous Cretaceous texture from 3D micro computerized tomography and nuclear magnetic resonance images. For 3D vision, we introduce controllable-measurable-volume as new supervised segmentation, in which a unique set of voxel intensity corresponds to grain and pore throat sizes. The morphology decoder demarks and aggregates the morphologies boundaries in a novel way to produce permeability. Morphology decoder method consists of five novel processes, which describes in this paper, these novel processes are: (1) Geometrical 3D Permeability, (2) Machine Learning guided 3D Properties Recognition of Rock Morphology, (3) 3D Image Properties Integration Model for Permeability, (4) MRI Permeability Imager, and (5) Morphology Decoder (the process that integrates the other four novel processes).
翻译:渗透性对自然流体的流量特性具有主要影响。 Lattice Boltzmann 模拟器决定了纳米和微粒网络的渗透性。 模拟器拥有数以百万计的流量动态计算及其累积错误和高消费的计算, 为了高效和一致地预测渗透性, 我们提议了一种形态解码器, 一种平行和连续的序列流重建, 由 3D 微电脑化成色和核磁共振图像组成的机器学习分解异质质质谱和核磁共振图像。 对于 3D 视觉, 我们引入了可控可计量量作为新的受监督分解, 其中一套独特的 voxel 强度与谷物和孔喉大小相匹配。 形态解码和聚合形态边界, 以一种新颖的方式产生渗透性。 形态解码方法由五个新流程组成, 本文描述这些新流程是:(1) 几何3D Permeable性, (2) 机器学习3D 特征, (3) 3D 图像整合模型, 4 图像整合模型 。