Euler k-means (EulerK) first maps data onto the unit hyper-sphere surface of equi-dimensional space via a complex mapping which induces the robust Euler kernel and next employs the popular $k$-means. Consequently, besides enjoying the virtues of k-means such as simplicity and scalability to large data sets, EulerK is also robust to noises and outliers. Although so, the centroids captured by EulerK deviate from the unit hyper-sphere surface and thus in strict distributional sense, actually are outliers. This weird phenomenon also occurs in some generic kernel clustering methods. Intuitively, using such outlier-like centroids should not be quite reasonable but it is still seldom attended. To eliminate the deviation, we propose two Rectified Euler k-means methods, i.e., REK1 and REK2, which retain the merits of EulerK while acquire real centroids residing on the mapped space to better characterize the data structures. Specifically, REK1 rectifies EulerK by imposing the constraint on the centroids while REK2 views each centroid as the mapped image from a pre-image in the original space and optimizes these pre-images in Euler kernel induced space. Undoubtedly, our proposed REKs can methodologically be extended to solve problems of such a category. Finally, the experiments validate the effectiveness of REK1 and REK2.
翻译:Euler K- means (EulerK) 首次通过复杂的映射将数据映射到电子空间的单位超视距表面,通过复杂的映射将数据映射到电子空间的超视距表面上,从而导致强大的 Euler 内核和下一个使用流行的美元汇率。因此,除了享受K手段的优点,例如简单和可扩缩到大型数据集之外,EulerK(EulerK) 对噪音和外端数据也很强大。虽然如此,EulerK(EulerK) 捕获的类固醇从单位超视界表面和严格的分配意义上来说,实际上是异质的。这种怪异的现象也出现在一些通用的内核子内核聚法方法中。 直觉地说,使用这种近端的半圆形半圆形半圆形的半圆形机械,我们建议两种校正的Eurer KK(REK) 和REK2(REK) 保有Euler K的优点,同时获取位于已映射空间结构结构的正更精确。 。具体地,REK1 将EK2 roidalalal-rumalalal 的每个的原始图像的精确的精确在Eum-rum-rum 的精确的精确的精确的精确的精确的精确的精确度,将Erumalbis-rumal ex-c-rbisalmalbisal ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex exviewal ex ex ex ex ex ex ex ex ex exal exbal exal ex exal ex ex ex ex ex ex ex ex ex ex ex exal exalal ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex ex exal ex ex ex ex ex ex ex ex