Let ${\cal G}$ be a minor-closed graph class. We say that a graph $G$ is a $k$-apex of ${\cal G}$ if $G$ contains a set $S$ of at most $k$ vertices such that $G\setminus S$ belongs to ${\cal G}$. We denote by ${\cal A}_k ({\cal G})$ the set of all graphs that are $k$-apices of ${\cal G}.$ In the first paper of this series we obtained upper bounds on the size of the graphs in the minor-obstruction set of ${\cal A}_k ({\cal G})$, i.e., the minor-minimal set of graphs not belonging to ${\cal A}_k ({\cal G}).$ In this article we provide an algorithm that, given a graph $G$ on $n$ vertices, runs in $2^{{\sf poly}(k)}\cdot n^3$-time and either returns a set $S$ certifying that $G \in {\cal A}_k ({\cal G})$, or reports that $G \notin {\cal A}_k ({\cal G})$. Here ${\sf poly}$ is a polynomial function whose degree depends on the maximum size of a minor-obstruction of ${\cal G}.$ In the special case where ${\cal G}$ excludes some apex graph as a minor, we give an alternative algorithm running in $2^{{\sf poly}(k)}\cdot n^2$-time.
翻译:$( cal G) 是一个不固定的图类 。 我们说, $( g) 是 $( $) 。 如果 $( g) 包含一个固定的美元, 最高为 $( 美元), 因此, 美元( setminus S$ ) 属于 $( 美元) 美元 。 我们用$( 美元) 表示所有图表的组数, 单位为 美元( 美元) 。 在本系列的第一页中, 美元( 美元) 是 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 。 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元), 美元( 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) 美元( 美元) ( 美元) ( 美元) 美元( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元) ( 美元