Federated learning (FL) has emerged as a popular methodology for distributing machine learning across wireless edge devices. In this work, we consider optimizing the tradeoff between model performance and resource utilization in FL, under device-server communication delays and device computation heterogeneity. Our proposed StoFedDelAv algorithm incorporates a local-global model combiner into the FL synchronization step. We theoretically characterize the convergence behavior of StoFedDelAv and obtain the optimal combiner weights, which consider the global model delay and expected local gradient error at each device. We then formulate a network-aware optimization problem which tunes the minibatch sizes of the devices to jointly minimize energy consumption and machine learning training loss, and solve the non-convex problem through a series of convex approximations. Our simulations reveal that StoFedDelAv outperforms the current art in FL in terms of model convergence speed and network resource utilization when the minibatch size and the combiner weights are adjusted. Additionally, our method can reduce the number of uplink communication rounds required during the model training period to reach the same accuracy.
翻译:联邦学习(FL) 已经形成一种流行的方法,用于在无线边缘设备之间分配机器学习。 在这项工作中,我们考虑在设备-服务器通信延迟和装置计算异质的情况下,优化FL模型性能和资源利用的权衡。我们提议的StoFedDelAv算法将一个本地-全球模型组合器纳入FL同步步骤。我们理论上描述StoFedDelAv的趋同行为,并获得最佳组合器重量,其中考虑到全球模型延迟和每个设备预期的本地梯度错误。然后我们设计一个网络觉知优化问题,以调和这些装置的微型尺寸,以联合尽量减少能源消耗和机器学习培训损失,并通过一系列的convex近似来解决非电流问题。我们的模拟显示,StoFedDelAv在模型趋同速度和网络资源利用方面超过了FL的当前艺术,而模型的趋同速度和组合器重量则会调整。此外,我们的方法可以减少模型培训期间所需的连接通信轮次数,以达到同样的精确度。