Learning time-dependent partial differential equations (PDEs) that govern evolutionary observations is one of the core challenges for data-driven inference in many fields. In this work, we propose to capture the essential dynamics of numerically challenging PDEs arising in multiscale modeling and simulation -- kinetic equations. These equations are usually nonlocal and contain scales/parameters that vary by several orders of magnitude. We introduce an efficient framework, Densely Connected Recurrent Neural Networks (DC-RNNs), by incorporating a multiscale ansatz and high-order implicit-explicit (IMEX) schemes into RNN structure design to identify analytic representations of multiscale and nonlocal PDEs from discrete-time observations generated from heterogeneous experiments. If present in the observed data, our DC-RNN can capture transport operators, nonlocal projection or collision operators, macroscopic diffusion limit, and other dynamics. We provide numerical results to demonstrate the advantage of our proposed framework and compare it with existing methods.
翻译:指导进化观测的学习依赖时间的局部差异方程式(PDEs)是许多领域数据驱动的推断的核心挑战之一。 在这项工作中,我们建议捕捉多尺度建模和模拟 -- -- 动能方程式中产生的具有数字挑战的PDEs的基本动态。这些方程式通常是非局部的,包含比例/参数,其规模因不同程度不同而异。我们引入了一个高效框架,即多级的连接式常线网络(DC-RNNSs),在RNN结构设计中纳入一个多尺度的 ansatz 和高等级的隐含(IMEX) 计划, 以确定不同实验产生的离散时间观测产生的多尺度和非局部PDEs的分析性表示。如果在观测数据中出现, 我们的DC-RNNN可以捕捉运输运营商、非本地投影或碰撞运营商、宏观扩散限制和其他动态。我们提供数字结果,以展示我们拟议框架的优势,并将其与现有方法进行比较。