Detecting anomalies from a series of temporal networks has many applications, including road accidents in transport networks and suspicious events in social networks. While there are many methods for network anomaly detection, statistical methods are under utilised in this space even though they have a long history and proven capability in handling temporal dependencies. In this paper, we introduce \textit{oddnet}, a feature-based network anomaly detection method that uses time series methods to model temporal dependencies. We demonstrate the effectiveness of oddnet on synthetic and real-world datasets. The R package oddnet implements this algorithm.
翻译:检测一系列时间网络的异常现象有许多应用,包括交通网络中的交通事故和社会网络中的可疑事件。虽然有许多探测网络异常现象的方法,但统计方法在这一空间的使用不足,尽管这些方法具有悠久的历史和经证明的处理时间依赖性的能力。在本文件中,我们引入了基于地貌网络异常现象的检测方法,即使用时间序列方法模拟时间依赖性。我们展示了合成和真实世界数据集中的奇特网的有效性。R包奇网使用这一算法。