Deep neural network (DNN) inference using reduced integer precision has been shown to achieve significant improvements in memory utilization and compute throughput with little or no accuracy loss compared to full-precision floating-point. Modern FPGA-based DNN inference relies heavily on the on-chip block RAM (BRAM) for model storage and the digital signal processing (DSP) unit for implementing the multiply-accumulate (MAC) operation, a fundamental DNN primitive. In this paper, we enhance the existing BRAM to also compute MAC by proposing BRAMAC (Compute-in-$\underline{\text{BR}}$AM $\underline{\text{A}}$rchitectures for $\underline{\text{M}}$ultiply-$\underline{\text{Ac}}$cumulate). BRAMAC supports 2's complement 2- to 8-bit MAC in a small dummy BRAM array using a hybrid bit-serial & bit-parallel data flow. Unlike previous compute-in-BRAM architectures, BRAMAC allows read/write access to the main BRAM array while computing in the dummy BRAM array, enabling both persistent and tiling-based DNN inference. We explore two BRAMAC variants: BRAMAC-2SA (with 2 synchronous dummy arrays) and BRAMAC-1DA (with 1 double-pumped dummy array). BRAMAC-2SA/BRAMAC-1DA can boost the peak MAC throughput of a large Arria-10 FPGA by 2.6$\times$/2.1$\times$, 2.3$\times$/2.0$\times$, and 1.9$\times$/1.7$\times$ for 2-bit, 4-bit, and 8-bit precisions, respectively at the cost of 6.8%/3.4% increase in the FPGA core area. By adding BRAMAC-2SA/BRAMAC-1DA to a state-of-the-art tiling-based DNN accelerator, an average speedup of 2.05$\times$/1.7$\times$ and 1.33$\times$/1.52$\times$ can be achieved for AlexNet and ResNet-34, respectively across different model precisions.
翻译:在使用简化的整数精度进行深度神经网络(DNN)推断的情况下,与全精度浮点相比,已经显示出在几乎没有精度损失的情况下,显着提高了内存利用率和计算吞吐量。现代基于FPGA的DNN推断主要依靠芯片上的块RAM(BRAM)来存储模型和数字信号处理(DSP)单元来实现乘累加(MAC)操作,这是基本的DNN原语。在本文中,我们通过提出BRAMAC(计算在$\underline{\text{BR}}$AM中的$\underline{\text{A}}$rchitectures for $\underline{\text{M}}$ultiply-$\underline{\text{Ac}}$cumulate)来增强现有的BRAM,以便它也可以计算MAC。BRAMAC使用混合位串行和位并行数据流,在小的虚拟BRAM数组中支持2的补码2到8位MAC。与以前的计算在BRAM构架不同,BRAMAC在计算虚拟BRAM数组时允许读/写访问主BRAM数组,从而实现持久性和瓦片化的DNN推断。我们探讨了两个BRAMAC变体:BRAMAC-2SA(具有2个同步虚拟数组)和BRAMAC-1DA(具有1个双泵虚拟数组)。对于2位,4位和8位精度,BRAMAC-2SA / BRAMAC-1DA可以将大型Arria-10 FPGA的峰值MAC吞吐量提高2.6倍/2.1倍,2.3倍/2.0倍和1.9倍/1.7倍,而FPGA核心面积增加6.8%/3.4%成本。通过将BRAMAC-2SA / BRAMAC-1DA添加到最先进的瓦片化DNN加速器中,可以在AlexNet和ResNet-34中从不同的模型精度中实现平均加速比分别达到2.05倍/1.7倍和1.33倍/1.52倍。