While online conversations can cover a vast amount of information in many different formats, abstractive text summarization has primarily focused on modeling solely news articles. This research gap is due, in part, to the lack of standardized datasets for summarizing online discussions. To address this gap, we design annotation protocols motivated by an issues--viewpoints--assertions framework to crowdsource four new datasets on diverse online conversation forms of news comments, discussion forums, community question answering forums, and email threads. We benchmark state-of-the-art models on our datasets and analyze characteristics associated with the data. To create a comprehensive benchmark, we also evaluate these models on widely-used conversation summarization datasets to establish strong baselines in this domain. Furthermore, we incorporate argument mining through graph construction to directly model the issues, viewpoints, and assertions present in a conversation and filter noisy input, showing comparable or improved results according to automatic and human evaluations.
翻译:虽然在线对话可以以多种不同格式涵盖大量信息,但抽象文本摘要主要侧重于纯粹新闻文章的建模。这一研究差距的部分原因是缺乏用于总结在线讨论的标准化数据集。为弥补这一差距,我们设计了以问题-观点-支持框架为动力的批注协议,以众包形式为不同在线对话形式上的新闻评论、讨论论坛、社区问题解答论坛和电子邮件线索的四套新数据集。我们把最新最先进的模型作为我们数据集的基准,并分析与数据相关的特征。为了建立一个综合基准,我们还评估了这些关于广泛使用的谈话汇总数据集的模型,以建立该领域的强有力的基线。此外,我们通过图形构造将引力学纳入参数挖掘,以直接模拟在谈话和过滤的噪音投入中出现的问题、观点和主张,显示根据自动和人力评价可比较或改进的结果。