Bayesian Networks (BNs) are used in various fields for modeling, prediction, and decision making. pgmpy is a python package that provides a collection of algorithms and tools to work with BNs and related models. It implements algorithms for structure learning, parameter estimation, approximate and exact inference, causal inference, and simulations. These implementations focus on modularity and easy extensibility to allow users to quickly modify/add to existing algorithms, or to implement new algorithms for different use cases. pgmpy is released under the MIT License; the source code is available at: https://github.com/pgmpy/pgmpy, and the documentation at: https://pgmpy.org.
翻译:贝叶斯网络(BNs)在各个领域中用于建模、预测和决策。pgmpy 是一个 Python 包,提供一组算法和工具来处理 BNs 和相关模型。它实现了结构学习、参数估计、近似和精确推理、因果推断和模拟的算法。这些实现关注模块化和易于扩展性,使用户能够快速修改/添加现有算法,或为不同用例实现新算法。pgmpy在MIT许可下发布;源代码可在:https://github.com/pgmpy/pgmpy中获取,文档在:https://pgmpy.org中获取。