Electronic Health Record (EHR) systems provide critical, rich and valuable information at high frequency. One of the most exciting applications of EHR data is in developing a real-time mortality warning system with tools from survival analysis. However, most of the survival analysis methods used recently are based on (semi)parametric models using static covariates. These models do not take advantage of the information conveyed by the time-varying EHR data. In this work, we present an application of a highly scalable survival analysis method, BoXHED 2.0 to develop a real-time in-ICU mortality warning indicator based on the MIMIC IV data set. Importantly, BoXHED can incorporate time-dependent covariates in a fully nonparametric manner and is backed by theory. Our in-ICU mortality model achieves an AUC-PRC of 0.41 and AUC-ROC of 0.83 out of sample, demonstrating the benefit of real-time monitoring.
翻译:电子健康记录(EHR)系统在高频下提供关键、丰富和有价值的信息。EHR数据最令人兴奋的应用之一是利用生存分析工具开发实时死亡率警报系统,然而,最近使用的大部分生存分析方法都是基于(半)参数模型,使用静态共变法,这些模型没有利用时间变化的电子健康记录(EHR)数据所传递的信息。在这项工作中,我们采用了高度可扩缩的生存分析方法BoxHED 2.0,以根据MIMIC IV数据集开发一个在ICU内实时死亡警报指标。重要的是,BoxHED可以完全以非参数的方式纳入基于时间的共变数,并以理论为后盾。我们的ICU死亡率模型从抽样中得出了0.41的AU-PRC和0.83的AUC-ROC,显示了实时监测的好处。