The problem of multi-object tracking is a fundamental computer vision research focus, widely used in public safety, transport, autonomous vehicles, robotics, and other regions involving artificial intelligence. Because of the complexity of natural scenes, object occlusion and semi-occlusion usually occur in fundamental tracking tasks. These can easily lead to ID switching, object loss, detect errors, and misaligned limitation boxes. These conditions have a significant impact on the precision of multi-object tracking. In this paper, we design a new multi-object tracker for the above issues that contains an object \textbf{Relative Location Mapping} (RLM) model and \textbf{Target Region Density} (TRD) model. The new tracker is more sensitive to the differences in position relationships between objects. It can introduce low-score detection frames into different regions in real-time according to the density of object regions in the video. This improves the accuracy of object tracking without consuming extensive arithmetic resources. Our study shows that the proposed model has considerably enhanced the HOTA and DF1 measurements on the MOT17 and MOT20 data sets when applied to the advanced MOT method.
翻译:多对象跟踪问题是一个基本的计算机视野研究重点,广泛用于公共安全、交通、自主车辆、机器人和其他人工智能区域。由于自然场景的复杂性,物体封闭和半封闭通常发生在基本跟踪任务中。这很容易导致身份转换、物体丢失、检测错误和限制框错配。这些条件对多对象跟踪的精确度有重大影响。在本文中,我们为上述问题设计了一个新的多对象跟踪器,其中含有一个对象 \ textbf{Replical定位}(RLM) 模型和\ textbf{Terget Regence Density} (TRD) 模型。新的跟踪器对物体之间的位置关系差异比较敏感。根据视频目标区域的密度,可以实时向不同区域引入低分级检测框架。这样可以提高对象跟踪的准确性,而不会消耗大量算术资源。我们的研究显示,在应用高级MOT17和MOT20数据集时,拟议的模型大大加强了HATA和DF1测量MOT17和MOT20数据集。