Multicointegration is traditionally defined as a particular long run relationship among variables in a parametric vector autoregressive model that introduces additional cointegrating links between these variables and partial sums of the equilibrium errors. This paper departs from the parametric model, using a semiparametric formulation that reveals the explicit role that singularity of the long run conditional covariance matrix plays in determining multicointegration. The semiparametric framework has the advantage that short run dynamics do not need to be modeled and estimation by standard techniques such as fully modified least squares (FM-OLS) on the original I(1) system is straightforward. The paper derives FM-OLS limit theory in the multicointegrated setting, showing how faster rates of convergence are achieved in the direction of singularity and that the limit distribution depends on the distribution of the conditional one-sided long run covariance estimator used in FM-OLS estimation. Wald tests of restrictions on the regression coefficients have nonstandard limit theory which depends on nuisance parameters in general. The usual tests are shown to be conservative when the restrictions are isolated to the directions of singularity and, under certain conditions, are invariant to singularity otherwise. Simulations show that approximations derived in the paper work well in finite samples. The findings are illustrated empirically in an analysis of fiscal sustainability of the US government over the post-war period.
翻译:多变量组合传统上被定义为一个参数矢量自动递减模型中各变量之间的一种特殊长期关系,该模型在这些变量与均衡差差的部分总和之间引入了额外的组合联系。本文与参数模型不同,使用了半参数公式,表明长期有条件同差矩阵的奇异性在决定多相融合中具有明显作用。半参数框架的优点是,短期动态不需要以原I(1)系统上完全修改的最小正方(FM-OLS)等标准技术为模型和估计值。在多组合环境中,文件提供了调频-OLS限制理论,表明在单一方向上如何更快地达到趋同率,而限制分布则取决于调频-OLS估计中使用的有条件的单面长期同差估测值的分布。对回归系数的限制标准限值测试有非标准限值理论,这取决于一般的扰动参数。通常的测试显示,当限制与奇异性方向隔开时,在多组合环境中,FM-OLS限制值分布的理论表明,在单一方向上如何更快地实现趋同性,在某种情况下,模拟财政结果分析显示,比为弹性。