Sparse matrices are an integral part of scientific simulations. As hardware evolves new sparse matrix storage formats are proposed aiming to exploit optimizations specific to the new hardware. In the era of heterogeneous computing, users often are required to use multiple formats for their applications to remain optimal across the different available hardware, resulting in larger development times and maintenance overhead. A potential solution to this problem is the use of a lightweight auto-tuner driven by Machine Learning (ML) that would select for the user an optimal format from a pool of available formats that will match the characteristics of the sparsity pattern, target hardware and operation to execute. In this paper, we introduce Morpheus-Oracle, a library that provides a lightweight ML auto-tuner capable of accurately predicting the optimal format across multiple backends, targeting the major HPC architectures aiming to eliminate any format selection input by the end-user. From more than 2000 real-life matrices, we achieve an average classification accuracy and balanced accuracy of 92.63% and 80.22% respectively across the available systems. The adoption of the auto-tuner results in average speedup of 1.1x on CPUs and 1.5x to 8x on NVIDIA and AMD GPUs, with maximum speedups reaching up to 7x and 1000x respectively.


翻译:由于硬件正在开发新的稀薄矩阵存储格式,目的是利用新硬件特有的优化。在混合计算时代,用户往往需要使用多种格式来保持其应用在不同的现有硬件中保持最佳,从而产生更大的开发时间和维护间接费用。这个问题的潜在解决办法是使用由机器学习驱动的轻量型自动教学器,由机器学习(ML)驱动,为用户选择一种最佳格式,从现有格式库中选择一种最优格式,与宽度模式、目标硬件和操作特点相匹配。在本文中,我们引入了莫斐斯-奥克拉奇,这是一个图书馆,提供轻量型ML自动教学器,能够在多个后端准确预测最佳格式,目标是消除终端用户的任何格式选择输入。从2000年以上的实际矩阵中,我们从现有系统的平均分类准确性和平衡性分别为92.63%和80.22%。我们采用自动教学结果,平均速度为CPUs的1.1x和1.5x最高速度,分别达到GVIA至8。</s>

0
下载
关闭预览

相关内容

【干货书】真实机器学习,264页pdf,Real-World Machine Learning
机器学习入门的经验与建议
专知会员服务
92+阅读 · 2019年10月10日
【哈佛大学商学院课程Fall 2019】机器学习可解释性
专知会员服务
103+阅读 · 2019年10月9日
【SIGGRAPH2019】TensorFlow 2.0深度学习计算机图形学应用
专知会员服务
39+阅读 · 2019年10月9日
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Arxiv
0+阅读 · 2023年4月29日
Arxiv
0+阅读 · 2023年4月29日
Arxiv
0+阅读 · 2023年4月27日
Arxiv
19+阅读 · 2022年10月6日
Arxiv
11+阅读 · 2022年9月1日
An Overview on Machine Translation Evaluation
Arxiv
14+阅读 · 2022年2月22日
On Feature Normalization and Data Augmentation
Arxiv
15+阅读 · 2020年2月25日
VIP会员
相关VIP内容
相关资讯
VCIP 2022 Call for Demos
CCF多媒体专委会
1+阅读 · 2022年6月6日
征稿 | International Joint Conference on Knowledge Graphs (IJCKG)
开放知识图谱
2+阅读 · 2022年5月20日
强化学习三篇论文 避免遗忘等
CreateAMind
19+阅读 · 2019年5月24日
Hierarchically Structured Meta-learning
CreateAMind
26+阅读 · 2019年5月22日
Transferring Knowledge across Learning Processes
CreateAMind
28+阅读 · 2019年5月18日
强化学习的Unsupervised Meta-Learning
CreateAMind
17+阅读 · 2019年1月7日
Unsupervised Learning via Meta-Learning
CreateAMind
42+阅读 · 2019年1月3日
A Technical Overview of AI & ML in 2018 & Trends for 2019
待字闺中
17+阅读 · 2018年12月24日
利用动态深度学习预测金融时间序列基于Python
量化投资与机器学习
18+阅读 · 2018年10月30日
相关论文
相关基金
国家自然科学基金
0+阅读 · 2014年12月31日
国家自然科学基金
1+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2013年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2012年12月31日
国家自然科学基金
0+阅读 · 2008年12月31日
Top
微信扫码咨询专知VIP会员