In this paper, we study the problem of sorting unichromosomal linear genomes by prefix double-cut-and-joins (or DCJs) in both the signed and the unsigned settings. Prefix DCJs cut the leftmost segment of a genome and any other segment, and recombine the severed endpoints in one of two possible ways: one of these options corresponds to a prefix reversal, which reverses the order of elements between the two cuts (as well as their signs in the signed case). Depending on whether we consider both options or reversals only, our main results are: (1) new structural lower bounds based on the breakpoint graph for sorting by unsigned prefix reversals, unsigned prefix DCJs, or signed prefix DCJs; (2) a polynomial-time algorithm for sorting by signed prefix DCJs, thus answering an open question in [8]; (3) a 3/2-approximation for sorting by unsigned prefix DCJs, which is, to the best of our knowledge, the first sorting by {\em prefix} rearrangements problem that admits an approximation ratio strictly smaller than 2 (with the obvious exception of the polynomial-time solvable problems); and finally, (4) an FPT algorithm for sorting by unsigned prefix DCJs parameterised by the number of breakpoints in the genome.
翻译:在本文中, 我们研究在签名和未签名的设置中通过前缀双切和顺序( 或 DCJs) 来分解 unichromosomal 线性基因组的问题。 前缀 DCJs 切除基因组和任何其它部分的最左部分, 并用两种可能的方式之一重新检查断开的端点 : 其中一个选项与前缀倒转相对应, 颠倒两个切分之间的元素顺序( 以及它们签名的案例中的符号 ) 。 取决于我们是否只考虑两个选项或逆序, 我们的主要结果为:(1) 以断点图为基础的新的结构下端框, 用于通过未签名的前缀前缀前缀、 未签名前缀 DCJs 和前缀前缀前缀进行排序 ; (2) 使用签名前缀 DCJs 之间的混合时间算法, 在 [8] 中回答一个开放式问题 ; (3) 以未签名前缀前缀为3/2/ PATBs 排序, 也就是我们的知识, 以断序前序前序为第2号。